期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low Doses of Ionized Radiation and Hypomagnetic Field Alter Redox Properties of Water and Physiological Characteristics of Seeds of the Highest Plants 被引量:2
1
作者 Svetlana Stepanovna Moisa Vladimir Vladimirovich Tsetlin +1 位作者 Margarita Alexandrovna Levinskich Elena Leonidovna Nefedova 《Journal of Biomedical Science and Engineering》 2016年第8期410-418,共10页
The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of wate... The influence of a 40-fold attenuated geomagnetic field and its combined action with low doses of α- and γ-irradiation on the physiological characteristics of seeds of the highest plants and redox properties of water was investigated. It established the reduction of seed germination both under direct and indirect effects due to water action of attenuated geomagnetic field. A negative effect of hypomagnetic field on grown characteristics of seeds under indirect effect via water was decreased by the low doses of γ-irradiation, and was increased by low doses of α-irradiation, i.e. ionized radiation was the dominant factor in their combined action. It was revealed the increasing of the value of the oxidation-reduction potential of water under the influence of low-intensive α-ir-radiation (239Pu), γ-irradiation (137Cs) and also that the magnetic induction attenuated pointing to a natural decline. The increasing of the oxidation-reduction potential value testifies about “the regular decreasing of internal energy of water molecules” and the increasing of its oxidative properties, which, in our opinion, is caused the inhibition of the germination of seeds. It is supposed that namely water is the main component in the effects of studying factors on bio-objects, which acts due to the alterations of the properties and structural content of water. 展开更多
关键词 α- and γ-Irradiation Hypomagnetic Field Oxidation-Reduction Potential of Water Physiological characteristics of Seeds of the Highest plants
下载PDF
Reducing residues of tetracycline and its resistance genes in soil-maize system and improving plant growth:Selecting the best remediation substance
2
作者 Junmei QIN Jianli SONG +4 位作者 Fenwu LIU Jian ZHANG Huaye XIONG Wenlong BI Yue NI 《Pedosphere》 SCIE CAS CSCD 2022年第2期268-282,共15页
Tetracycline(TC)and tetracycline resistance genes(TRGs)in plant edible tissues pose a potential risk to the environment and then to human health.This study used a pot experiment to investigate the effects of different... Tetracycline(TC)and tetracycline resistance genes(TRGs)in plant edible tissues pose a potential risk to the environment and then to human health.This study used a pot experiment to investigate the effects of different remediation substances(worm castings,fungal chaff,microbial inoculum,and biochar)on the physiological characteristics of maize and the residues of TC and TRGs in the soil-maize system under TC stress.The results showed that TC significantly inhibited growth,disrupted the antioxidant defense system balance,and increased proline and malondialdehyde contents of maize plants.Tetracycline residue contents were significantly higher in root than in shoot,and followed the order root>stem-leaf>grain,which was consistent with the distribution of bioconcentration factors in the different organs of maize plants.The TC residue content in the soil under different treatments was 0.013–1.341 mg kg-1.The relative abundances of different antibiotic resistance genes in the soil-maize system varied greatly,and in maize plants followed the order intI1>tetW>tetG>tet B>tetM>tetX>tetO.In the soil,tetX had the highest relative abundance,followed by tetG and tetW.A redundancy analysis(RDA)showed that TC was positively correlated with TRGs.The addition of different remediation substances alleviated the toxicity of TC on maize physiological characteristics and reduced the TC and TRG residues in the soil-maize system,with biochar being the best remediation substance.These results provide new insights into the effect of biochar on the migration of TC and TRGs from soil to plants. 展开更多
关键词 antibiotics BIOCHAR fungal chaff microbial inoculum plant physiological characteristics worm castings
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部