期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Low-Molecular-Weight Aliphatic Acids in Soils Incubated with Plant Residues Under Different Moisture Conditions 被引量:30
1
作者 SHENALIN LIXUEYUAN 《Pedosphere》 SCIE CAS CSCD 1997年第1期79-86,共8页
Incubation experiments were conducted to investigate the dynamics of low- molecufar-weight aliphatic acids in two andosols with and without plant materials. Results showed that amount of low- molecular-weight aliphati... Incubation experiments were conducted to investigate the dynamics of low- molecufar-weight aliphatic acids in two andosols with and without plant materials. Results showed that amount of low- molecular-weight aliphatic acids in soils alone varied considerably with water regime under which the soil was incubated,duration of incubation and soil organic matter content, ranging from 257-860 pmol kg-1 soil I of which 19%~33% was in free state. Incorporation of plant materials increased greatly both the amount and number of members of low- molecular- weight aliphaticacidst and also the proporticn of low-molec "far-weight aliphatic acids occurred in free state. Generally, among these aliphatic acids detected, acetic, propionic, glyoxalic and formic acids were predominant. 展开更多
关键词 ANDOSOL low-molecular-weight aliphatic acids plant residue
下载PDF
A kinetic approach to evaluate salinity effects on carbon mineralization in a plant residue-amended soil 被引量:5
2
作者 NOURBAKHSH Farshid SHEIKH-HOSSEINI Ahmad R. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第10期788-793,共6页
The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralizati... The interaction of salinity stress and plant residue quality on C mineralization kinetics in soil is not well understood. A laboratory experiment was conducted to study the effects of salinity stress on C mineralization kinetics in a soil amended with alfalfa, wheat and corn residues. A factorial combination of two salinity levels (0.97 and 18.2 dS/m) and four levels of plant residues (control, alfalfa, wheat and corn) with three replications was performed. A first order kinetic model was used to describe the C mineralization and to calculate the potentially mineralizable C. The CO2-C evolved under non-saline condition, ranged from 814.6 to 4842.4 mg CO2-C/kg in control and alfalfa residue-amended soils, respectively. Salinization reduced the rates of CO2 evolution by 18.7%, 6.2% and 5.2% in alfalfa, wheat and corn residue-amended soils, respectively. Potentially mineralizable C (Co) was reduced significantly in salinized alfalfa residue-treated soils whereas, no significant difference was observed for control treatments as well as wheat and corn residue-treated soils. We concluded that the response pattern of C mineralization to salinity stress depended on the plant residue quality and duration of incubation. 展开更多
关键词 Salinity stress Carbon mineralization First-order kinetics plant residues residue quality
下载PDF
Soybean Response to Weed Residues in the Soil
3
作者 Dwayne D. Joseph Michael W. Marshall Matthew Cutulle 《Agricultural Sciences》 2024年第8期801-811,共11页
Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil prof... Soybean production systems that return plant residues to the soil surface are gaining in popularity. As these practices become more widespread, more crop and weed residues are being introduced into the upper soil profile. Greenhouse studies were conducted to determine the effects of varying concentrations of Palmer amaranth and pitted morningglory plant residues (aboveground portion of the plant) on soybean production. The study was arranged in a completely randomized experimental design with five treatments and five replications. Palmer amaranth and pitted morningglory residues were incorporated into soil at 20,000, 40,000, 80,000 and 160,000 ppm. Inert plastic residue at the same residue levels was included as a check. Soybean dry weight, leaf area and leaf tissue nutrient content were recorded during the study. A decrease in soybean dry weight and leaf area was observed as Palmer amaranth residue in the soil increased. Palmer amaranth residues of 160,000 ppm and 80,000 ppm in the soil significantly reduced soybean dry weight by 69% and 59%, respectively, and soybean leaf area by 60% and 57%, respectively. In contrast, pitted morningglory and inert plastic residues had no observable effect on soybean growth and development. This study demonstrated Palmer amaranth residues in the soil impacted early season soybean growth and development. 展开更多
关键词 Reduced Tillage plant residues ALLELOPATHY Glycine max L.
下载PDF
Removal of polycyclic aromatic hydrocarbons from aqueous solution by raw and modified plant residue materials as biosorbents 被引量:10
4
作者 Zemin Xi Baoliang Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期737-748,共12页
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents... Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorpfion kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorpfion coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater. 展开更多
关键词 plant residue biosorbent modification sorption polycyclic aromatic hydrocarbons wastewater treatment
原文传递
Effects of Two Composted Plant Pesticide Residues,Incorporated with Trichoderma viride,on Root-Knot Nematode in Balloonflower 被引量:7
5
作者 ZHANG Shuang-xi ZHANG Xing 《Agricultural Sciences in China》 CAS CSCD 2009年第4期447-454,共8页
Plant pesticide residues, such as chinaberry (Melia toosendan) residue and sand cypress (Sabina vulgaris) residue, are pesticidal plant materials discarded after the bioactive ingredient has been extracted with or... Plant pesticide residues, such as chinaberry (Melia toosendan) residue and sand cypress (Sabina vulgaris) residue, are pesticidal plant materials discarded after the bioactive ingredient has been extracted with organic solvents. The only option for botanical pesticide residue utilization has been as landfill. Chinaberry residue (CBR) and sand cypress residue (SCR) were collected and composted in Yangling, Shaanxi Province, China. We studied the effects of chinaberry residue compost (CBRC), CBRC incorporated with Trichoderma viride (CBRCT), sand cypress residue compost (SCRC), and SCRC incorporated with T. viride (SCRCv) on the root-knot nematode, Meloidogyne incognita, infesting the balloonflower (Platycodon grandiflorum). Bioassay results indicated that stock solutions of the CBRCT and SCRCT extracts significantly inhibited egg hatching and caused high larval mortality, followed in degree by the CBRC and SCRC extracts. The CBR and SCR extracts caused very low inhibition of eggs and larvae. Supplementing potting mixtures with these four composts reduced the severity of root galling and increased the proportion of marketable roots. The severity of root galling decreased and the average weight of the marketable roots increased with an increase in all the composts when supplemented at rates from 5 to 30%. CBR- and SCR-supplemented pot soils also inhibited the nematodes, but CBR and SCR applied to the soil had a phytotoxic effect and inhibited balloonflower growth. Supplementing field soil with the composts reduced the severity of root galling and the populations of southern root-knot nematodes in the soil. CBRCT and SCRCT clearly enhanced the average weight of the marketable roots by 30.45 and 26.64%, respectively. Continuous supplementation with CBRCT or SCRCT in the same field significantly enhanced the control of the root-knot nematode, and the populations of nematodes continued to decrease with second inoculations. The populations of total Trichoderma spp. were distinctly enhanced and were maintained at high levels for a long time in the supplemented soils. 展开更多
关键词 balloon flower root-knot nematode plant pesticide residue COMPOST compost extract
下载PDF
Extraction and recycling technologies of cobalt from primary and secondary resources:A comprehensive review
6
作者 Yukun Huang Pengxu Chen +5 位作者 Xuanzhao Shu Biao Fu Weijun Peng Jiang Liu Yijun Cao Xiaofeng Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期628-649,共22页
Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially deplete... Cobalt has excellent electrochemical,magnetic,and heat properties.As a strategic resource,it has been applied in many hightech products.However,the recent rapid growth of the battery industry has substantially depleted cobalt resources,leading to a crisis of cobalt resource supply.The paper examines cobalt ore reserves and distribution,and the recent development and consumption of cobalt resources are summarized as well.In addition,the principles,advantages and disadvantages,and research status of various methods are discussed comprehensively.It can be concluded that the use of diverse sources(Cu-Co ores,Ni-Co ores,zinc plant residues,and waste cobalt products)for cobalt production should be enhanced to meet developmental requirements.Furthermore,in recovery technology,the pyro-hydrometallurgical process employs pyrometallurgy as the pretreatment to modify the phase structure of cobalt minerals,enhancing its recovery in the hydrometallurgical stage and facilitating high-purity cobalt production.Consequently,it represents a promising technology for future cobalt recovery.Lastly,based on the above conclusions,the prospects for cobalt are assessed regarding cobalt ore processing and sustainable cobalt recycling,for which further study should be conducted. 展开更多
关键词 cobalt recovery copper-cobalt ore nickel-cobalt ore zinc plant residue waste cobalt products
下载PDF
Decomposition of Plant Materials in Upland and Submerged Soils Under Different Climatic Conditions 被引量:3
7
作者 LIZHONG LINXIN-XIONG 《Pedosphere》 SCIE CAS CSCD 1993年第1期89-92,共4页
The decomposition of plant materials in soil, along with the factors affecting it, has been frequently studied, and much information has been accumulated. Most reports indicated that the decomposition of organic mater... The decomposition of plant materials in soil, along with the factors affecting it, has been frequently studied, and much information has been accumulated. Most reports indicated that the decomposition of organic materials proceeded more slowly in paddy soil than in upland soil because of the insufficient 02 supply, the lower soil temperature and the weaker activity of aquatic invertebrates in the former as compared with those in 展开更多
关键词 14C specific activity decomposition rate plant residue
下载PDF
Water extractable plant nutrients in soils amended with cow manure co-composted with maple tree residues 被引量:1
8
作者 Zobia Anwar Muhammad Irshad +2 位作者 An Ping Farhan Hafeez Shao Yang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第5期167-173,共7页
Studies on the availability of plant nutrients in soils treated with manure co-composted feed-stocks are very rare.The present investigation aimed at studying the nutrient release pattern from three soils amended with... Studies on the availability of plant nutrients in soils treated with manure co-composted feed-stocks are very rare.The present investigation aimed at studying the nutrient release pattern from three soils amended with maple tree leaves co-composted with cow manure.Soils were mixed with the compost at the rate of 20 t/hm^(2) and incubated at room temperature.Prior to incubation,plants residue samples were analyzed for total elemental concentrations(NO_(3),NH_(4),P,K,Ca,Mg,Na,Zn,Mn,Fe,Cu,Ni and Cd).Water extractability of nutrients from soils was affected by the type of soil and ratio of composted manure applied.Extractable NH_(4),P,K,Ca and Mg concentrations varied in the descending order of sandy clay,sandy loam and silt loam except NO_(3).The concentrations of P,K,Ca and Mg in the amended soils increased with the ratio of manure co-composted with leaf litter while those of NO_(3),NH_(4) and trace elements decreased.The residual nutrients in soil varied directly with their contents in the compost amendments.Co-composting improved the availability of nutrients in soils and this should be an ideal approach to managing the enormous waste generated from the livestock sector for restoring soil fertility. 展开更多
关键词 macro-elements micro-elements varied textured soils CO-COMPOSTING cow manure maple plant residues
原文传递
30,000 bpd Capacity Modified Modular Refinery Operations in Nigeria
9
作者 Adeloye Olalekan Michael 《Open Journal of Modelling and Simulation》 2022年第4期340-348,共9页
The study investigated and classified twenty Nigerian crude oil types based on their products recovery volume at true boiling point temperature of 370&#730C using crude oil assay analysis data into Group A (crude ... The study investigated and classified twenty Nigerian crude oil types based on their products recovery volume at true boiling point temperature of 370&#730C using crude oil assay analysis data into Group A (crude oil with recovery volume above 80%), Group B (crude oil with recovery volume between 70% and 79%) and Group C (crude oil with recovery volume below 70%) respectively. Thus, twenty Nigerian crude oil types were simulated in a modified modular refinery (modified topping plant) of 30,000 bpd capacity and twenty-nine (29) column trays number using Aspen Hysys software. Furthermore, the residues from the conventional modular refinery were processed as feedstock or precursor into the hydrocracker reactor attached to the stripping section of the modified modular refinery to yield more valuable products of liquefied petroleum gas, naphtha, diesel and bottom (residue). The simulation results of the modified modular refinery were compared with conventional modular refinery in terms of their residual yield percentage as Nigerian Brass 2012 of API 40.62, recovery volume 88.78%, yielded residue of 11.22% and 1.29% for conventional modular and modified modular refineries respectively while Okoro 2012 of least API 23.54, recovery volume 57.84%, yielded residue of 42.16% and 4.92% for conventional modular and modified modular refineries respectively. Thus, the residual or bottom product issue associated with operational process of conventional modular refinery operations in Nigeria due to inefficient or non-operational conventional major refinery in Nigeria has been resolved to minimum or least amount with the operational process of modified modular refinery operations in Nigeria. 展开更多
关键词 Modified Modular Refinery Hydrocracker Topping plant residue Simulation Aspen Hysys
下载PDF
Soil Respiration, Microbial Biomass C and N Availability in a Sandy Soil Amended with Clay and Residue Mixtures 被引量:1
10
作者 Sharmistha PAL Petra MARSCHNER 《Pedosphere》 SCIE CAS CSCD 2016年第5期643-651,共9页
Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A l... Crop yields in sandy soils can be increased by addition of clay-rich soil, but little is known about the effect of clay addition on nutrient availability after addition of plant residues with different C/N ratios. A loamy sandy soil (7% clay) was amended with a clay-rich subsoil (73% clay) at low to high rates to achieve soil mixtures of 12%, 22%, and 30% clay, as compared to a control (sandy soil alone) with no clay addition. The sandy-clay soil mixtures were amended with finely ground plant residues at 10 g kg-l: mature wheat (Triticum aestivum L.) straw with a C/N ratio of 68, mature faba bean (Vicia faba L.) straw with a C/N ratio of 39, or their mixtures with different proportions (0% 100%, weight percentage) of each straw. Soil respiration was measured over days 0-45 and microbial biomass C (MBC), available N, and pH on days 0, 15, 30, and 45. Cumulative respiration was not clearly related to the C/N ratio of the residues or their mixtures, but C use efficiency (cumulative respiration per unit of MBC on day 15) was greater with faba bean than with wheat and the differences among the residue mixtures were smaller at the highest clay addition rate. The MBC concentration was lowest in sole wheat and higher in residue mixtures with 50% of wheat and faba bean in the mixture or more faba bean. Soil N availability and soil pH were lower for the soil mixtures of 22% and 30% clay compared to the sandy soil alone. It could be concluded that soil cumulative respiration and MBC concentration were mainly influenced by residue addition, whereas available N and pH were influenced by clay addition to the sandy soil studied. 展开更多
关键词 available N C use efficiency C/N ratio cumulative respiration nutrient availability pH plant residues
原文传递
Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen(N)and reduce carbon and N losses:An incubation study 被引量:17
11
作者 Guopeng ZHOU Weidong CAO +5 位作者 Jinshun BAI Changxu XU Naohua ZENG Songjuan GAO Robert M.REES Fugen DOU 《Pedosphere》 SCIE CAS CSCD 2020年第5期661-670,共10页
Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying pro... Returning rice straw and leguminous green manure alone or in combination to soil is effective in improving soil fertility in South China.Despite the popularity of this practice,our understanding o f the underlying processes for straw and manure combined application is relatively poor.In this study,rice straw(carbon(C)/nitrogen(N)ratio of 63),green manure(hairy vetch,C/N ratio of 14),and their mixtures(C/N ratio of 25 and 35)were added into a paddy soil,and their effects on soil N availability and C or N loss under waterlogged conditions were evaluated in a 100-d incubation experiment.All plant residue treatments significantly enhanced C〇2 and CH4 emissions,but decreased N2O emission.Dissolved organic C(DOC)and N(DON)and microbial biomass C in soil and water-soluble organic C and N and mineral N in the upper aqueous layer above soil were also enhanced by all the plant residue treatments except the rice straw treatment,and soil microbial biomass N and mineral N were lower in the rice straw treatment than in the other treatments.Changes in plant residue C/N ratio,DOC/DON ratio,and cellulose content significantly affected greenhouse gas emissions and active C and N concentrations in soil.Additionally,the treatment with green manure alone yielded the largest C and N losses,and incorporation of the plant residue mixture with a C/N ratio of 35 caused the largest net global warming potential(nGWP)among the amended treatments.In conclusion,the co-incorporation of rice straw and green manure can alleviate the limitation resulting from only applying rice straw(N immobilization)or the sole application of leguminous green manure(high C and N losses),and the residue mixture with a C/N ratio of 25 is a better option because of lower nGWP. 展开更多
关键词 active C and N pools C/N ratio global warming potential greenhouse gas plant residues straw returning
原文传递
Tolerance of Chrysantemum maximum to heavy metals:The potential for its use in the revegetation of tailings heaps 被引量:4
12
作者 Ma.del Carmen A.Gonzlez-Chvez Rogelio Carrillo-Gonzlez 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第2期367-375,共9页
To find if ornamental plants are applicable to the remediation of metal-polluted areas, the tolerance of chrysanthemum plants (Chysanthemum maximum) var. Shasta to different metals under hydroponic conditions was st... To find if ornamental plants are applicable to the remediation of metal-polluted areas, the tolerance of chrysanthemum plants (Chysanthemum maximum) var. Shasta to different metals under hydroponic conditions was studied. Their responses as influenced by the mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe BEG25 on substrates containing mine residues were also investigated. Our results showed that chrysanthemum is a metal-tolerant plant under hydroponic conditions, plants behaving as Pb-excluders, whereas Cd, Cu and Ni were accumulated in roots. Low accumulation in flowers was observed for Cd and Cu but it was concentration-dependent. Ni and Pb were not translocated to flowers. Shoot biomass was not significantly affected by the different rates of mine residue addition for both mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants accumulated less Pb and Cu in both shoots and roots than non-mycorrhizal plants. Chysanthemum could be a prospective plant for revegetation of tailings and the use of inoculation may decrease plant metal accumulation in polluted soils. 展开更多
关键词 mine residues ornamental plants phytostabilization urban remediation
原文传递
Fate of Basal N Under Split Fertilization in Rice with ^(15)N Isotope Tracer 被引量:11
13
作者 LI Ganghua LIN Jingjing +3 位作者 XUE Lihong DING Yanfeng WANG Shaohua YANG Linzhang 《Pedosphere》 SCIE CAS CSCD 2018年第1期135-143,共9页
Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understan... Split fertilization strategy is popularly adopted in rice to synchronize soil nitrogen(N) supply and crop N demand. Attention has been paid more on mid-season topdressing N, but limited on basal N. A clearer understanding of the basal N fate under split fertilization is crucial for determining rational basal N split ratio to improve the yield and reduce the loss to environment. A two-year field experiment with two N rates of 150 and 300 kg Nha^(-1), two split ratios of basal N, 40% and 25%, and two rice varieties,Wuyunjing 23(japonica) and Y-liangyou 2(super hybrid indica), was conducted. Labelled ^(15) N urea was supplied in micro-plots as basal fertilizer to determine the plant uptake, translocation, soil residual, and loss of basal N fertilizer. The results showed that basal N absorbed by rice was only 1.6%–11.5% before tillering fertilization(8–10 d after transplanting), 6.5%–21.4% from tillering fertilization to panicle fertilization, and little(0.1%–4.4%) after panicle fertilization. The recovery efficiency of basal N for the entire rice growth stage was low and ranged from 18.7% to 24.8%, not significantly affected by cultivars or N treatments. Soil residual basal N accounted for 10.3%–36.4% and decreased with increasing total N rate and basal N ratio, regardless of variety and year. 43.8%–70.4% of basal N was lost into the environment based on the N balance. Basal N loss was significantly linearly positive related with the basal N rate and obviously enhanced by the increasing basal N ratio for both varieties in both 2012 and 2013. The N use efficiency and yield was significantly improved when decreasing the basal N ratio from 40% to 25%. The results indicated that the basal N ratio should be reduced, especially with limited N inputs, to improve the yield and reduce the N loss to the environment. 展开更多
关键词 N balance N loss N split ratio N use efficiency plant uptake rice variety soil residual N yield
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部