Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st...Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.展开更多
This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters...This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.展开更多
Fluoride contents in plants and soils in Kaili City were measured with fluorinion as per electrode method and the related characteristics were analyzed in order to explore effects of air fluoride pollution on plant an...Fluoride contents in plants and soils in Kaili City were measured with fluorinion as per electrode method and the related characteristics were analyzed in order to explore effects of air fluoride pollution on plant and soil.The results indicated that fluoride content in plants tended to be volatile in 135.62-1 420.97 μg/g and averaged 513.99 μg/g;fluoride content in soils changed from 240.50-340.36 μg/g and averaged 279.60 μg/g.The contents of plant and soil both exceeded background value,suggesting that plants and soils in the region have been polluted.In addition,fluoride contents differ significantly upon plants.In detail,the maximal content was in Camelliaolelfera Abel and the minimal in Camelliaolelfera Abel.The contents of fluoride in different plant species vary,as follows:shrub vine herbaceous plant arbor;evergreen plants deciduous plant;fluoride contents in plants and soils also differ in varying degrees upon research sites.展开更多
In this communication, we review our work over two decades on air-pollutant-philic plants that can grow with air pollutants as the sole nutrient source. We believe that such plants are instrumental in mitigating air p...In this communication, we review our work over two decades on air-pollutant-philic plants that can grow with air pollutants as the sole nutrient source. We believe that such plants are instrumental in mitigating air pollution. Our target air pollutant has been atmospheric nitrogen dioxide (NO2), and our work on this subject has consisted of three parts: Variation in plants’ abilities to mitigate air pollutants among naturally occurring plants, genetic improvement of plants’ abilities to mitigate air pollutants, and the plant vitalization effect of NO2. So far, an estimation of the half-life of nitrogen derived from NO2 uptake in plants belonging to the 217 taxa studied to date has shown no plants to be naturally occurring air-pollutant-philic. However, we found that an enormous difference exists in plants’ ability to uptake and assimilate atmospheric NO2. Future studies on the causes of this process may provide an important clue to aid the genetic production of plants that are effectively air-pollutant-philic. Both genetic engineering of the genes involved in the primary nitrate metabolism and genetic modification by ion-beam irradiation failed to make plants air-pollutant-philic, but mutants obtained in these studies will prove useful in revealing those genes critical in doing so. During our study on air-pollutant-philic plants, we unexpectedly discovered that prolonged exposure of plants to a sufficient level of NO2 activates the uptake and metabolism of nutrients that fuel plant growth and development. We named this phenomenon “the plant vitalization effect of NO2” (PVEON). Investigations into the mechanisms and genes involved in PVEON will provide an important clue to making plants air-pollutant-philic in the future.展开更多
Air farm could provide urban people with a beautiful place to release working pressure,remove troubles,cultivate moral character and long for future.It was of practical value.The paper had analyzed the tendency and ne...Air farm could provide urban people with a beautiful place to release working pressure,remove troubles,cultivate moral character and long for future.It was of practical value.The paper had analyzed the tendency and necessity to construct air farm and put forward limiting factors and favorable factors for construction of air farm.Limiting factors were:① man-made planting soil had separated plants from the earth,restricting the supply of underground water;② plants on roof had weak capacity resisting to wind.Favorable factors were fresh air,good light and large temperature difference between day and night,which were beneficial for growth of plants.Based on domestic planting of blueberry,starting from the angles of good visual appearance,ecological effect and economic effect,four planting methods of blueberry had been proposed,which were standard planting,landscape planting,greenhouse planting,and combination planting.It hoped to apply new techniques,new materials and research results in practical design of air farm as far as possible.展开更多
Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the ...Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Rowspacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.展开更多
Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasificatio...Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.展开更多
Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person's memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cog...Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person's memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles,and the degeneration of the cholinergic basal forebrain.During the progression of AD patients may produce changes in personality and behavior,such as anxiety,paranoia,confusion,hallucinations and also to experience delusions and lanlasies.The first neurotransmitter defect discovered in Al) involved acetylcholine as cholinergic function is required for short—term memory.Oxidative stress may underlie the progressive neurodegeneration characteristic of AD.Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen.The neurodegenerative process in AD may involveβ amyloid toxicity.Neurotoxicity of β amyloid appears to involve oxidative stress.Currently,there is no cure for this disease but in new treatments,reveals a new horizon on the biology of this disease.This paper reviews the effects of a number of commonly used types of herbal medicines for the Irealment of AD.The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.展开更多
Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal...Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal-fired power plants.Therefore,it is essential to study the formation temperature of ABS to prevent the deposition of ABS in air preheaters.In this paper,the SO_(3) reaction kinetic model is used to analyze the SO_(3) generation process from coal combustion to the selective catalytic reduction(SCR)exit stage,and the kinetic model of NO reduction is used to analyze the NH_(3) escape process.A prediction model for calculating the ABS formation temperature based on the S content in coal and NO reduction parameters of the SCR is proposed,solving the difficulty of measuring SO_(3) concentration and NH_(3) concentration in the previous calculation equation of ABS formation temperature.And the reliability of the model is verified by the actual data of the power plant.Then the influence of S content in coal,NH_(3)/NO_(x) molar ratio,different NO_(x) concentrations at SCR inlet,and NO removal efficiency on the formation temperature of ABS are analyzed.展开更多
By using quadrat sampling method, the community structure and diversity of ground cover plants in the flight area in Tianjin Binhai International Airport were investigated from spring to autumn in 2015. The results sh...By using quadrat sampling method, the community structure and diversity of ground cover plants in the flight area in Tianjin Binhai International Airport were investigated from spring to autumn in 2015. The results showed that 58 plant species were recorded at the airport, belonging to 18 families and 48 genera. Dominant plant species showed seasonal characteristics. Specifically, lxeri chinensis ( Thunb. ) Nakai and Lagopsis supina ( Steph. ) Ik. -Gal. ex Knorr. were the dominant species in spring; Lagopsis supina, Cirsium setosum (Willd.) MB, Plantago asiatica L. , Cynanchum chinense R. Br. and Humulus scandens (I_our.) Merr. were the dominant species in summer; Chloris virgata Sw. and Eleusine indica (L.) Gaertn. were the dominant species in autumn. Quantitative characteris- tics of the dominant species, including the density, frequency, coverage and height, varied in different seasons. In different seasons, changes in the diversity of plant communities in three sampling points were analyzed. The results indicated that plant communities in summer exhibited the highest diversity and the most uni- form distribution. This study provided a theoretical basis for avoidance of bird strike in Tianjin Binhai International Airport.展开更多
A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution upt...A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.展开更多
In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environm...In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environmental conditions and inefficient air conditioning.In this study,interlayer cool airflow(ILCA)was used to introduce room air into plants’internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer).By using optimal operating parameters at a room temperature of 28℃,the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution.This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield.Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning)systems for crop production in plant factories.展开更多
The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS ...The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.展开更多
Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of ...Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of anthropogenic emissions in the Antarctic)were assessed.A bottom-up approach was used to compile an emission inventory for the Antarctic.This involved estimating emissions at various spatial levels by sequentially aggregating estimate emissions from point emission sources.This is the first time this approach has been proposed and used.Emissions of CO2,NOx,particulate matter(PM10),and CO in the modern period were estimated at the research station,geographic region,natural domain,biogeographic region,continent section,and whole continent scales.Yearly emissions are presented here,but the approach allows emissions at different averaging periods to be estimated.This means mean or maximum yearly,monthly,daily,or hourly emissions can be estimated.The estimates could be used to model pollutant transmission and dispersion,assess the impacts of pollutants,and develop emission forecasts for various scenarios.展开更多
The kinetics of low level chemiluminescence from Chinese white polpar leaf smoked by CO and two gaseous mixture of SO 2 and CO or SO 2, NO x and CO, and their luminescence intensity formula were described. The compa...The kinetics of low level chemiluminescence from Chinese white polpar leaf smoked by CO and two gaseous mixture of SO 2 and CO or SO 2, NO x and CO, and their luminescence intensity formula were described. The comparison of the results indicated that three kinds of the gaseous compounds could cause no changes of the substantial nature of foliar biophoton emission. However, they made the luminescence intensity, including I o (1) and I o (2) , altered in a certain degree, and the changes caused by the fumigation of CO and the mixed gas of SO 2 and CO were different from that made by the gaseous mixture of SO 2, NO x and CO in τ′ and τ″ of the photo induced luminescence from plant leaf.展开更多
An integrated approach was developed to determine the critical levels of air pollution for ecological standard setting based on the unified index of biological response, by taking into account the effects of all pollu...An integrated approach was developed to determine the critical levels of air pollution for ecological standard setting based on the unified index of biological response, by taking into account the effects of all pollution components simultaneously. An empirical model of plant productivity was taken as the dose response model for gaseous pollutant effect on the productivity of trees and the annual productivity of plants was used as the above mentioned index. The CO2 increase in the lower atmosphere was considered to potentially increase plant productivity and NO2 was estimated as neutral while being dangerous for plants as a chemical precursor of ozone or as a source of acidification. The maximum permissible chronic O3 and SO2 levels for trees were estimated and it was found that O3 is much more phytotoxic, as compared to SO2 , with a rather narrow range of permissible levels (27-33 ppb) which complicates its monitoring and control.展开更多
In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermody...In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.展开更多
In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO...In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO2 emission values from 22 of 24 generating sets conform to the requirements, which is causing by the high performance of the flue gas desulfurization system. Much higher NOx emissions indicate that the construction of flue gas denitrition systems is necessary. PM emissions varied from 2.3 kg to 299.9 kg per hour. Total sulfur, moisture, ash and volatile content, and net caloric value of coals were investigated to elucidate the relationship between coals and air pollutant emissions.展开更多
The actuality and disadvantages of traditional high power asynchronism motor drive air compressor in locomotive ser-vice plant are discussed. In order to reduce the energy consumption and obtain safe running, a variab...The actuality and disadvantages of traditional high power asynchronism motor drive air compressor in locomotive ser-vice plant are discussed. In order to reduce the energy consumption and obtain safe running, a variable frequency con-trol method to the motor is supplied. A PLC with touch screen is used for monitoring the status of the compressor and its control system. It also presents energy consumption analysis caused by the variable frequency control method in a locomotive service plant.展开更多
文摘Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health.
文摘This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections.
基金Supported by National Natural Science Foundation of China(31100187)Guizhou Science and Technology Foundation([2008]2030)Natural Science Foundation of Guizhou Provincial Education Department(2007054)~~
文摘Fluoride contents in plants and soils in Kaili City were measured with fluorinion as per electrode method and the related characteristics were analyzed in order to explore effects of air fluoride pollution on plant and soil.The results indicated that fluoride content in plants tended to be volatile in 135.62-1 420.97 μg/g and averaged 513.99 μg/g;fluoride content in soils changed from 240.50-340.36 μg/g and averaged 279.60 μg/g.The contents of plant and soil both exceeded background value,suggesting that plants and soils in the region have been polluted.In addition,fluoride contents differ significantly upon plants.In detail,the maximal content was in Camelliaolelfera Abel and the minimal in Camelliaolelfera Abel.The contents of fluoride in different plant species vary,as follows:shrub vine herbaceous plant arbor;evergreen plants deciduous plant;fluoride contents in plants and soils also differ in varying degrees upon research sites.
文摘In this communication, we review our work over two decades on air-pollutant-philic plants that can grow with air pollutants as the sole nutrient source. We believe that such plants are instrumental in mitigating air pollution. Our target air pollutant has been atmospheric nitrogen dioxide (NO2), and our work on this subject has consisted of three parts: Variation in plants’ abilities to mitigate air pollutants among naturally occurring plants, genetic improvement of plants’ abilities to mitigate air pollutants, and the plant vitalization effect of NO2. So far, an estimation of the half-life of nitrogen derived from NO2 uptake in plants belonging to the 217 taxa studied to date has shown no plants to be naturally occurring air-pollutant-philic. However, we found that an enormous difference exists in plants’ ability to uptake and assimilate atmospheric NO2. Future studies on the causes of this process may provide an important clue to aid the genetic production of plants that are effectively air-pollutant-philic. Both genetic engineering of the genes involved in the primary nitrate metabolism and genetic modification by ion-beam irradiation failed to make plants air-pollutant-philic, but mutants obtained in these studies will prove useful in revealing those genes critical in doing so. During our study on air-pollutant-philic plants, we unexpectedly discovered that prolonged exposure of plants to a sufficient level of NO2 activates the uptake and metabolism of nutrients that fuel plant growth and development. We named this phenomenon “the plant vitalization effect of NO2” (PVEON). Investigations into the mechanisms and genes involved in PVEON will provide an important clue to making plants air-pollutant-philic in the future.
文摘Air farm could provide urban people with a beautiful place to release working pressure,remove troubles,cultivate moral character and long for future.It was of practical value.The paper had analyzed the tendency and necessity to construct air farm and put forward limiting factors and favorable factors for construction of air farm.Limiting factors were:① man-made planting soil had separated plants from the earth,restricting the supply of underground water;② plants on roof had weak capacity resisting to wind.Favorable factors were fresh air,good light and large temperature difference between day and night,which were beneficial for growth of plants.Based on domestic planting of blueberry,starting from the angles of good visual appearance,ecological effect and economic effect,four planting methods of blueberry had been proposed,which were standard planting,landscape planting,greenhouse planting,and combination planting.It hoped to apply new techniques,new materials and research results in practical design of air farm as far as possible.
基金supported by the National Natural Science Foundation of China(NSFC30471016)National Ample Commissariat Program of Technology,China(2004BA520A03,BE2004387).
文摘Based on the experiment of measuring panicles and leaves, air temperature, and humidity above the canopy of rice cultivars after heading in 2005 and 2006, we investigated the temperature difference (TD) between the air and organs of rice plant and its relationship with spikelet fertility. The results showed that TDs between the air and organs of rice varied with air temperature, air humidity, and plant type. For similar air humidity, TDs were lower at the air temperature of 28.5℃ than at higher temperature of 35.5℃, whereas for the same air temperature, the TDs decreased as the air humidity increased. TDs were also affected by plant type of the cultivars. Erect panicle cultivars showed higher TDs than those with droopy panicles under similar climatic conditions, and cultivars with panicles above flag leaf (PAFL) had higher TDs than those with panicles below the flag leaf (PBFL). Cultivars grown in a location with lower air humidity and higher temperature, such as Taoyuan, China, had higher spikelet fertility than those in higher humidity under the similar air temperature during the grain filling stage. This is partially attributed to the larger TDs under the lower humidity. Rowspacing and the ratio of basal-tillering to panicle-spikelet fertilizer showed a significant influence on TD and subsequently on spikelet fertility, suggesting the possibility of increasing spikelet fertility by agronomic management.
基金partial support of UK EPSRC under grants EP/V012053/1,EP/S032622/1,EP/P004709/1,EP/P003605/1 and EP/N032888/1the British Council under 2020-RLWK12-10478 and 2019-RLWK11-10724。
文摘Liquefied natural gas(LNG)is regarded as one of the cleanest fossil fuel and has experienced significant developments in recent years.The liquefaction process of natural gas is energy-intensive,while the regasification of LNG gives out a huge amount of waste energy since plenty of high grade cold energy(-160℃)from LNG is released to sea water directly in most cases,and also sometimes LNG is burned for regasification.On the other hand,liquid air energy storage(LAES)is an emerging energy storage technology for applications such as peak load shifting of power grids,which generates 30%-40%of compression heat(-200℃).Such heat could lead to energy waste if not recovered and used.The recovery of the compression heat is technically feasible but requires additional capital investment,which may not always be economically attractive.Therefore,we propose a power plant for recovering the waste cryogenic energy from LNG regasification and compression heat from the LAES.The challenge for such a power plant is the wide working temperature range between the low-temperature exergy source(-160℃)and heat source(-200℃).Nitrogen and argon are proposed as the working fluids to address the challenge.Thermodynamic analyses are carried out and the results show that the power plant could achieve a thermal efficiency of 27%and 19%and an exergy efficiency of 40%and 28%for nitrogen and argon,respectively.Here,with the nitrogen as working fluid undergoes a complete Brayton Cycle,while the argon based power plant goes through a combined Brayton and Rankine Cycle.Besides,the economic analysis shows that the payback period of this proposed system is only 2.2 years,utilizing the excess heat from a 5 MW/40 MWh LAES system.The findings suggest that the waste energy based power plant could be co-located with the LNG terminal and LAES plant,providing additional power output and reducing energy waste.
基金Supported by Research and Technology Deputy of Shahrekord University of Medical Sciences
文摘Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person's memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles,and the degeneration of the cholinergic basal forebrain.During the progression of AD patients may produce changes in personality and behavior,such as anxiety,paranoia,confusion,hallucinations and also to experience delusions and lanlasies.The first neurotransmitter defect discovered in Al) involved acetylcholine as cholinergic function is required for short—term memory.Oxidative stress may underlie the progressive neurodegeneration characteristic of AD.Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen.The neurodegenerative process in AD may involveβ amyloid toxicity.Neurotoxicity of β amyloid appears to involve oxidative stress.Currently,there is no cure for this disease but in new treatments,reveals a new horizon on the biology of this disease.This paper reviews the effects of a number of commonly used types of herbal medicines for the Irealment of AD.The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.
基金the Key Research and Development Plan of Shandong Province (2019GSF109004)Natural Science Foundation of Shandong Province (ZR2020ME190) for funding and supporting this work
文摘Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal-fired power plants.Therefore,it is essential to study the formation temperature of ABS to prevent the deposition of ABS in air preheaters.In this paper,the SO_(3) reaction kinetic model is used to analyze the SO_(3) generation process from coal combustion to the selective catalytic reduction(SCR)exit stage,and the kinetic model of NO reduction is used to analyze the NH_(3) escape process.A prediction model for calculating the ABS formation temperature based on the S content in coal and NO reduction parameters of the SCR is proposed,solving the difficulty of measuring SO_(3) concentration and NH_(3) concentration in the previous calculation equation of ABS formation temperature.And the reliability of the model is verified by the actual data of the power plant.Then the influence of S content in coal,NH_(3)/NO_(x) molar ratio,different NO_(x) concentrations at SCR inlet,and NO removal efficiency on the formation temperature of ABS are analyzed.
基金Supported by Civil Aviation ProjectEntrusted Project of Tianjin Binhai International Airport
文摘By using quadrat sampling method, the community structure and diversity of ground cover plants in the flight area in Tianjin Binhai International Airport were investigated from spring to autumn in 2015. The results showed that 58 plant species were recorded at the airport, belonging to 18 families and 48 genera. Dominant plant species showed seasonal characteristics. Specifically, lxeri chinensis ( Thunb. ) Nakai and Lagopsis supina ( Steph. ) Ik. -Gal. ex Knorr. were the dominant species in spring; Lagopsis supina, Cirsium setosum (Willd.) MB, Plantago asiatica L. , Cynanchum chinense R. Br. and Humulus scandens (I_our.) Merr. were the dominant species in summer; Chloris virgata Sw. and Eleusine indica (L.) Gaertn. were the dominant species in autumn. Quantitative characteris- tics of the dominant species, including the density, frequency, coverage and height, varied in different seasons. In different seasons, changes in the diversity of plant communities in three sampling points were analyzed. The results indicated that plant communities in summer exhibited the highest diversity and the most uni- form distribution. This study provided a theoretical basis for avoidance of bird strike in Tianjin Binhai International Airport.
基金This paper was supported by the National Natural Science Foundation of China (No. 30271053)
文摘A comparative study was conducted on liquid penetration of the freeze-drying and air-drying sapwood and heartwood lumber of plantation Chinese fir (Cunninghamia lanceolata). The maximum amount of dyeing solution uptake by the capillary rise method was used to evaluate the liquid penetration properties of the treated wood. The pit aspiration ratio was determined by semithin section method. Changes in wood microstructure were investigated using scanning electron microscopy. The results showed that compared with air drying, the freeze drying had a significant effect on liquid penetration of sapwood and heartwood of Chinese fir. The liquid penetration of sapwood is significantly higher than that of the heartwood for both drying treatments. Low pit aspiration ratio and cracks of pits membrane of some bordered pits are the main reasons for increasing liquid penetration after freeze drying treatment.
基金This work was supported by the National Natural Science Foundation of China(31701969)the Key Projects of Ningxia Key R&D Program Fund,China(2018BBF02012)the Science and Technology Program of Shaanxi Province,China(2017ZDXM-NY-057).
文摘In plant factories,the plant microclimate is affected by the control system,plant physiological activities and aerodynamic characteristics of leaves,which often leads to poor ventilation uniformity,suboptimal environmental conditions and inefficient air conditioning.In this study,interlayer cool airflow(ILCA)was used to introduce room air into plants’internal canopy through vent holes in cultivation boards and air layer between cultivation boards and nutrient solution surface(interlayer).By using optimal operating parameters at a room temperature of 28℃,the ILCA system achieved similar cooling effects in the absence of a conventional air conditioning system and achieved an energy saving of 50.8% while bringing about positive microclimate change in the interlayer and nutrient solution.This resulted in significantly reduced root growth by 41.7% without a negative influence on lettuce crop yield.Future development in this precise microclimate control method is predicted to replace the conventional cooling(air conditioning)systems for crop production in plant factories.
基金The National High Technology Research and Development Program of China(863 Program)(No.2012AA051801)the National Natural Science Foundation of China(No.51176033)
文摘The process of an O2//CO2 power plant based on chemical looping air separation (CLAS) is modeled using the Aspen Plus software. The operating parameters and power consumption of the CLAS unit are analyzed. The CLAS system, thermal power generation system and flue gas cooling and compression unit (CCU) are coupled and optimized, and the temperature and flow of the flue gas extraction are determined. The results indicate that the net plant efficiency of CLAS O2/CO2 power plant is 39.2%, which is only 3.54% lower than that of the conventional power plants without carbon capture. However, the O2/CO2 power plant based on cryogenic air separation technology brings 8% to 10% decrease in the net plant efficiency. By optimizations, the net plant efficiency increases by 1.65%. The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%. The oxygen concentration from the chemical looping air separation unit is 12.2%.
文摘Emissions of air pollutants and greenhouse gases into the atmosphere in Antarctica from power plants with diesel generators(the main sources of energy at Antarctic research stations and the main stationary sources of anthropogenic emissions in the Antarctic)were assessed.A bottom-up approach was used to compile an emission inventory for the Antarctic.This involved estimating emissions at various spatial levels by sequentially aggregating estimate emissions from point emission sources.This is the first time this approach has been proposed and used.Emissions of CO2,NOx,particulate matter(PM10),and CO in the modern period were estimated at the research station,geographic region,natural domain,biogeographic region,continent section,and whole continent scales.Yearly emissions are presented here,but the approach allows emissions at different averaging periods to be estimated.This means mean or maximum yearly,monthly,daily,or hourly emissions can be estimated.The estimates could be used to model pollutant transmission and dispersion,assess the impacts of pollutants,and develop emission forecasts for various scenarios.
文摘The kinetics of low level chemiluminescence from Chinese white polpar leaf smoked by CO and two gaseous mixture of SO 2 and CO or SO 2, NO x and CO, and their luminescence intensity formula were described. The comparison of the results indicated that three kinds of the gaseous compounds could cause no changes of the substantial nature of foliar biophoton emission. However, they made the luminescence intensity, including I o (1) and I o (2) , altered in a certain degree, and the changes caused by the fumigation of CO and the mixed gas of SO 2 and CO were different from that made by the gaseous mixture of SO 2, NO x and CO in τ′ and τ″ of the photo induced luminescence from plant leaf.
文摘An integrated approach was developed to determine the critical levels of air pollution for ecological standard setting based on the unified index of biological response, by taking into account the effects of all pollution components simultaneously. An empirical model of plant productivity was taken as the dose response model for gaseous pollutant effect on the productivity of trees and the annual productivity of plants was used as the above mentioned index. The CO2 increase in the lower atmosphere was considered to potentially increase plant productivity and NO2 was estimated as neutral while being dangerous for plants as a chemical precursor of ozone or as a source of acidification. The maximum permissible chronic O3 and SO2 levels for trees were estimated and it was found that O3 is much more phytotoxic, as compared to SO2 , with a rather narrow range of permissible levels (27-33 ppb) which complicates its monitoring and control.
文摘In this study an energy and exergy analysis is made of moist air, it is used the psychometrics charts. A Visual Basic program is used to generate psychometrics charts. These charts are used to analyze the air thermodynamic behavior, considering the environmental variations, pressure, temperature and relative humidity. Also, the available energy in the cooling processes at constant enthalpy, humidification at constant temperature and heating with constant relative humidity is analyzed. For example, we obtained that the enthalpy and exergy in a thermodynamic state, with conditions, Patm = 1.013 bar, Tatm = 25oC and Φatm=50%, are h = 50.56 kJ/kga and ε =11.5 kJ/kga;and for Patm= 0.77 bar to the same conditions of Tatm and Φatm, the enthalpy and exergy increases in a 14% and 20%, respectively.
文摘In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO2 emission values from 22 of 24 generating sets conform to the requirements, which is causing by the high performance of the flue gas desulfurization system. Much higher NOx emissions indicate that the construction of flue gas denitrition systems is necessary. PM emissions varied from 2.3 kg to 299.9 kg per hour. Total sulfur, moisture, ash and volatile content, and net caloric value of coals were investigated to elucidate the relationship between coals and air pollutant emissions.
文摘The actuality and disadvantages of traditional high power asynchronism motor drive air compressor in locomotive ser-vice plant are discussed. In order to reduce the energy consumption and obtain safe running, a variable frequency con-trol method to the motor is supplied. A PLC with touch screen is used for monitoring the status of the compressor and its control system. It also presents energy consumption analysis caused by the variable frequency control method in a locomotive service plant.