期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Identification of P-type plasma membrane H^(+)-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination
1
作者 Bingli Jiang Wei Gao +8 位作者 Yating Jiang Shengnan Yan Jiajia Cao Litian Zhang Yue Zhang Jie Lu Chuanxi Ma Cheng Chang Haiping Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2164-2177,共14页
The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions o... The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions of HAs in germination and seed dormancy(SD)have not been validated in wheat.Here,we identified 28 TaHA genes(TaHA1-28)in common wheat,which were divided into five subfamilies.An examination of gene expression in strong-and weak-SD wheat varieties led to the discovery of six candidate genes(TaHA7/-12/-14/-16/-18/-20).Based on a single nucleotide polymorphism(SNP)mutation(C/T)in the TaHA7 coding region,a CAPS marker(HA7)was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate(EMS)in‘Jimai 22’and‘Jing 411’backgrounds,and in transgenic Arabidopsis lines.TaHA7 appears to regulate germination and SD by mediating gibberellic acid(GA)and abscisic acid(ABA)signaling,metabolism,and biosynthesis.The results presented here will enable future research regarding the TaHAs in wheat. 展开更多
关键词 wheat P-type plasma membrane H^(+)-ATPase seed dormancy abscisic acid GIBBERELLIN
下载PDF
Functional analysis of MdSUT2.1,a plasma membrane sucrose transporter from apple
2
作者 ZHANG Bo FAN Wen-min +2 位作者 ZHU Zhen-zhen WANG Ying ZHAO Zheng-yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期762-775,共14页
Sugar content is a determinant of apple(Malus×domestica Borkh.)sweetness.However,the molecular mechanism underlying sucrose accumulation in apple fruit remains elusive.Herein,this study reported the role of the s... Sugar content is a determinant of apple(Malus×domestica Borkh.)sweetness.However,the molecular mechanism underlying sucrose accumulation in apple fruit remains elusive.Herein,this study reported the role of the sucrose transporter MdSUT2.1 in the regulation of sucrose accumulation in apples.The MdSUT2.1 gene encoded a protein with 612 amino acid residues that could be localized at the plasma membrane when expressed in tobacco leaf protoplasts.MdSUT2.1 was highly expressed in fruit and was positively correlated with sucrose accumulation during apple fruit development.Moreover,complementary growth assays in a yeast mutant validated the sucrose transport activity of MdSUT2.1.MdSUT2.1 overexpression in apples and tomatoes resulted in significant increases in sucrose,fructose,and glucose contents compared to the wild type(WT).Further analysis revealed that the expression levels of sugar metabolism-and transport-related genes SUSYs,NINVs,FRKs,HXKs,and TSTs increased in apples and tomatoes with MdSUT2.1 overexpression compared to WT.Finally,unlike the tonoplast sugar transporters MdTST1 and MdTST2,the promoter of MdSUT2.1 was not induced by exogenous sugars.These findings provide valuable insights into the molecular mechanism underlying sugar accumulation in apples. 展开更多
关键词 APPLE MdSUT2.1 SUGAR TRANSPORT plasma membrane
下载PDF
Effects of salinity on activities of H^+-ATPase, H^+-PPase and membrane lipid composition in plasma membrane and tonoplast vesicles isolated from soybean(Glycine max L.) seedlings 被引量:9
3
作者 YUBing-jun LAMHon-ming +1 位作者 SHAOGui-hua LIUYou-ling 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第2期259-262,共4页
The effects of NaCl stress on the H +-ATPase, H +-PPase activity and lipid composition of plasma membrane(PM) and tonoplast(TP) vesicles isolated from roots and leaves of two soybean cultivars(Glycine max L.) differ... The effects of NaCl stress on the H +-ATPase, H +-PPase activity and lipid composition of plasma membrane(PM) and tonoplast(TP) vesicles isolated from roots and leaves of two soybean cultivars(Glycine max L.) differing in salt tolerance(Wenfeng7, salt-tolerant; Union, salt-sensitive) were investigated. When Wenfeng7 was treated with 0.3%(W/V) NaCl for 3 d, the H +-ATPase activities in PM and TP from roots and leaves exhibited a reduction and an enhancement, respectively. The H +-PPase activity in TP from roots also increased. Similar effects were not observed in roots of Union. In addition, the increases of phospholipid content and ratios of phospholipid to galactolipid in PM and TP from roots and leaves of Wenfeng7 may also change membrane permeability and hence affect salt tolerance. 展开更多
关键词 SALINITY Glycine max L. plasma membrane TONOPLAST H +-ATPase H +-PPase membrane lipid composition
下载PDF
Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedlings with various salinities 被引量:4
4
作者 ZHAOZhong-qiu ZHENGHai-lei ZHUYong-guan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第5期742-745,共4页
The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kandelia candel were cultivated in sand with various salinities(0‰, 10‰, 20‰, 30‰, 40‰) for 60 d. Plasma membrane vesicles of high-p... The salt-secreting mangrove, Avicennia marina, and non-salt-secreting mangrove, Kandelia candel were cultivated in sand with various salinities(0‰, 10‰, 20‰, 30‰, 40‰) for 60 d. Plasma membrane vesicles of high-purity in leaves and roots of A.marina and K. candel seedlings were obtained by two-phase partitioning. The function of the plasma membranes, the activity of ATPase, membrane potential and transmembrane proton gradient, at various salinities were investigated. The results showed that within a certain range of salinity(A. marina and roots of K. candel: 0—30‰; leaves of K.candel: 0—20‰), the activity of ATPase increased with increasing salinity, while high salinity(above 30‰ or 20‰) inhibited ATPase activity. In comparison with A. marina, K. candel appeared to be more sensitive to salinity. The dynamics of membrane potential and transmembrane proton gradient in leaves and roots of A. marina and K. candel seedlings were similar to that of ATPase. When treated directly by NaCl all the indexes were inhibited markedly: there was a little increase within 0—10‰(K. candel) or 0—20‰(A. marina) followed by sharp declining. It indicated that the structure and function of plasma membrane was damaged severely. 展开更多
关键词 salinity A. marina K. candel plasma membrane H-ATPase CA-ATPASE membrane potential transmembrane proton gradient
下载PDF
Involvement of Plasma Membrane Ca^(2+)/H^+ Antiporter in Cd^(2+) Tolerance 被引量:5
5
作者 SHEN Guo-ming DU Qi-zhen WANG Jiang-xin 《Rice science》 SCIE 2012年第2期161-165,共5页
Cation exchangers (CAXs) belong to the cation/Ca2+exchanger superfamily which have been extensively investigated in plant tonoplasts over the last decade. Recently, the roles of CAXs involved in heavy metal accumul... Cation exchangers (CAXs) belong to the cation/Ca2+exchanger superfamily which have been extensively investigated in plant tonoplasts over the last decade. Recently, the roles of CAXs involved in heavy metal accumulation and tolerance in plants have been studied for phytoremediation and food security. In this mini review, we summarize the roles of the Ca2+/H+ antiporter in Ca2+ signal transduction, maintaining ion homeostasis and sequestering heavy metals into the vacuole. Moreover, we present a possible role of the plasma membrane Ca2+/H+ antiporter in heavy metal detoxification. 展开更多
关键词 Ca2+/H+ antiporter Cd2+ detoxification heavy metal plasma membrane rice
下载PDF
Changes of Plasma Membrane H^+-ATPase Activities of Glycine max Seeds by PEG Treatment 被引量:2
6
作者 Yang Yong-qing Wang Xiao-feng 《Forestry Studies in China》 CAS 2005年第2期7-11,共5页
The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG) treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolyt... The soybean (Glycine max) Heihe No. 23 is sensitive to imbibitional chilling injury. Polyethylene glycol (PEG) treatment can improve chilling tolerance of soybean seeds to a certain extent. The changes of hydrolytic ATPase in plasma membranes and H^+-pumping responses in soybean seeds were investigated during PEG treatments. Effects of exogenous calcium and exogenous ABA on the hydrolytic ATPase were also examined in order to understand the mechanism of chilling resistance. Highly purified plasma membranes were isolated by 6.0% aqueous two-phase partitioning from soybean seeds, as judged by the sensitivity of hydrolytic ATPase to sodium vanadate. PEG treatment resulted in a slight increase of the hydrolytic ATPase activity in 12 h. Then the activity decreased gradually, but still higher than the control. The H^+-pumping activity increased steadily during PEG treatment. Exogenous calcium had both activating and inhibiting effects on the hydrolytic ATPase, but the activity was inhibited in soybean seeds treated with exogenous ABA. Results suggested that PEG treatment, not the exogenous calcium and ABA, up-regulated H^+-ATPase activities in soybean seeds. 展开更多
关键词 soybean seeds PEG treatment plasma membrane (PM) H^+-ATPase exogenous calcium exogenous ABA
下载PDF
Generation and Identification of Monoclonal Antibody Against Porcine Adipocyte Plasma Membrane Proteins 被引量:1
7
作者 CAO Jin-ling CHEN Jian-jie +1 位作者 WANG Zhi-rui WANG Jun-dong 《Agricultural Sciences in China》 CAS CSCD 2007年第6期755-761,共7页
Production of monoclonal antibody against porcine adipocyte plasma membrane proteins to explore a new way of controlling body fat deposition and improving carcass quality is discussed in this article. Membrane protein... Production of monoclonal antibody against porcine adipocyte plasma membrane proteins to explore a new way of controlling body fat deposition and improving carcass quality is discussed in this article. Membrane proteins of pig adipocyte plasma membrane proteins were extracted with the help of sucrose density gradient centrifugation, and two kinds of proteins were obtained. The monoclonal antibody (designated 3B2 and 3F3) of IgG1 and IgG2b subclass against adipocyte membrane proteins were produced by immunization, with adipocyte membrane proteins as an antigen, and its titer was 1:105 detected by enzyme-linked immunoadsorbent assay (ELISA). The cell strains were identified by analyzing the number of chromosomes, the heat stability, the acid and alkali, the types and subtypes of immnoglobulin, and its peculiarities and affinities. Through identification, the chromosome number of hybridoma cell strains was from 80 to 100 and the strains formed good hybridomas colonies. The strains' affinity constants were 4.63 × 10^9 and 3.75 × 10^9 (mol L^-1)-1, respectively. At the same time, the McAb secreted was stable to environmental factors, such as, temperature, acid, alkali and so on. The monoclonal antibodies had been obtained and their specificity to porcine adipocyte plasma membrane proteins had been identified. 展开更多
关键词 porcine adipocyte plasma membrane protein HYBRIDOMA monoclonal antibody CHARACTERISTIC
下载PDF
Effects of Calcium on ATPase Activity and Lipid omposition of Plasma Membranes from Wheat Roots Under Aluminum Stress
8
作者 高翔 SHENZhen-guo 郝建华 《Agricultural Sciences in China》 CAS CSCD 2003年第9期970-974,共5页
Effects of calcium on ATPase activities, lipid contents, and fatty acid compositions of plasma membrane from wheat roots were assayed under aluminum stress. The results showed that the increase of calcium concentr... Effects of calcium on ATPase activities, lipid contents, and fatty acid compositions of plasma membrane from wheat roots were assayed under aluminum stress. The results showed that the increase of calcium concentration in the nutrient solution increased the activity of H + ATPase and the phospholipid content, decreased the activity of Ca 2+ ATPase and the galactolipid of plasma membrane. Owing to the decrease of linolenic acid content, the index of unsaturated fatty acid (IUFA) and index of double bond (DBI) decreased in Altas66. The IUFA and DBI of plasma membrane from Scout66 roots increased because its linolenic acid content increased obviously and its palmitic acid content decreased apparently. 展开更多
关键词 WHEAT Root system plasma membrane Aluminum stress CALCIUM ATPASE
下载PDF
Asparagine Synthetase Is Partially Localized to the Plasma Membrane and Upregulated by L-asparaginase in U937 Cells
9
作者 何映谊 李本尚 +5 位作者 罗长缨 沈树红 陈静 薛惠良 汤静燕 顾龙君 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第2期159-163,共5页
This study investigated the intracellular localization of asparagine synthetase (ASNS) in the relation with chemoresistance in leukemia. pIRES-GFP-ASNS-Flag/Neo expression vector was transiently tansfected into SK-N... This study investigated the intracellular localization of asparagine synthetase (ASNS) in the relation with chemoresistance in leukemia. pIRES-GFP-ASNS-Flag/Neo expression vector was transiently tansfected into SK-N-MC cells and 297T cells respectively. Immunofluorescence and Western blot analysis were performed for cellular localization of ASNS respectively. U937 cells were treated with L-asparaginase for 48 h and examined for endogenous ASNS expression on plasma membrane by immunofluorescence staining. Immunofluorescence staining showed that the transiently expressed ASNS was partly localized on transfected-SK-N-MC cell surface. Moreover, Western blotting exhibited that ASNS expressed both in cytosol and on plasma membrane of transfected-293T cells. Immunofluorescence staining with anti-ASNS-specific monoclonal antibody revealed that endogenous ASNS was localized on the plasma membrane of U937 cells, except for its distribution in the cytosol. In addition, ASNS exhibited a higher expression on plasma membrane after treatment with L-asparaginase as compared with the untreated cells. It was concluded that the subcellular translocation of ASNS may play an important role in L-asparaginase resistance in leukemia cells. 展开更多
关键词 asparagine synthetase L-ASPARAGINASE acute myeloid leukemia drug resistance plasma membrane
下载PDF
Preliminary study on plasma membrane fluidity of Psychrophilic Yeast Rhodotorula sp.NJ298 in low temperature
10
作者 唐海田 郑洲 +2 位作者 缪锦来 刘均铃 阚光峰 《Chinese Journal of Polar Science》 2007年第1期63-72,共10页
The ability of cell to modulate the fluidity of plasma membrane was crucial to the survival of microorganism at low temperature.Plasma membrane proteins,fatty acids and carotenoids profiles of Antarctic psychrophilc y... The ability of cell to modulate the fluidity of plasma membrane was crucial to the survival of microorganism at low temperature.Plasma membrane proteins,fatty acids and carotenoids profiles of Antarctic psychrophilc yeast Rhodotorula sp.NJ298 were investigated at-3 ℃,0 ℃ and 8 ℃.The results showed that plasma membrane protein content was greater at-3 ℃ than that at 8 ℃,and a unique membrane polypeptide composition with an apparent molecular mass of 94.7 kDa was newly synthesized with SDS-PAGE analysis;GC analysis showed that the main changes of fatty acids were the percentage of unsaturated fatty acids(C18:1 and C18:2) and shorter chain saturated fatty acid(C10:0) increased along with the decrease of the culture temperature from 8 ℃ to-3 ℃;HPLC analysis indicated that astaxanthin was the major functional carotenoids of the plasma membrane,percentage of which increased from 54.6±1.5% at 8 ℃ to 81.9±2.1% at-3 ℃.However the fluidity of plasma membrane which was determined by measuring fluorescence anisotropy was similar at-3 ℃,0 ℃ and 8 ℃.Hence these changes in plasma membrane’s characteristics were involved in the cellular cold-adaptation by which NJ298 could maintain normal plasma membrane fluidity at near-freezing temperature. 展开更多
关键词 psychrophilc yeast plasma membrane fluidity fatty acid PROTEIN carotenoids cold-adaptation
下载PDF
Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance plasma membrane H^(+)-ATPase activity and alkali stress tolerance by inhibiting PP2C-mediated dephosphorylation of TaHA2 in wheat 被引量:2
11
作者 Minghan Cui Yanping Li +6 位作者 Jianhang Li Fengxiang Yin Xiangyu Chen Lumin Qin Lin Wei Guangmin Xia Shuwei Liu 《Molecular Plant》 SCIE CSCD 2023年第3期571-587,共17页
Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a ca... Alkali stress is a major constraint for crop production in many regions of saline-alkali land.However,little is known about the mechanisms through which wheat responds to alkali stress.In this study,we identified a calcium ion-binding protein from wheat,TaCCD1,which is critical for regulating the plasma membrane(PM)H^(+)-ATPase-mediated alkali stress response.PM H+-ATPase activity is closely related to alkali tolerance in the wheat variety Shanrong 4(SR4).We found that two D-clade type 2C protein phosphatases,TaPP2C.D1 and TaPP2C.D8(TaPP2C.D1/8),negatively modulate alkali stress tolerance by dephosphorylating the penultimate threonine residue(Thr926)of TaHA2 and thereby inhibiting PM H+-ATPase activity.Alkali stress induces the expression of TaCCD1 in SR4,and TaCCD1 interacts with TaSAUR215,an early auxin-responsive protein.These responses are both dependent on calcium signaling triggered by alkali stress.TaCCD1 enhances the inhibitory effect of TaSAUR215 on TaPP2C.D1/8 activity,thereby promoting the activity of the PM H^(+)-ATPase TaHA2 and alkali stress tolerance in wheat.Functional and genetic analyses verified the effects of these genes in response to alkali stress,indicating that TaPP2C.D1/8 function downstream of TaSAUR215 and TaCCD1.Collectively,this study uncovers a new signaling pathway that regulates wheat responses to alkali stress,in which Ca^(2+)-dependent TaCCD1 cooperates with TaSAUR215 to enhance PM H+-ATPase activity and alkali stress tolerance by inhibiting TaPP2C.D1/8-mediated dephosphorylation of PM H+-ATPase TaHA2 in wheat. 展开更多
关键词 Triticum aestivum alkali stress resistance calcium-binding protein small auxin-up RNA plasma membrane H+-ATPase DEPHOSPHORYLATION
原文传递
An AIE probe for long-term plasma membrane imaging and membrane-targeted photodynamic therapy
12
作者 Hailing Zhao Nan Li +5 位作者 Caixia Ma Zhengwei Wei Qiya Zeng Keyi Zhang Na Zhao Ben Zhong Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期240-245,共6页
Two red-emissive luminogens(TPTH and TPTB) with typical aggregation-induced emission characteristics were developed. By introducing the heavy atom of Br at the end of alkyl chain, TPTB exhibited higher reactive oxygen... Two red-emissive luminogens(TPTH and TPTB) with typical aggregation-induced emission characteristics were developed. By introducing the heavy atom of Br at the end of alkyl chain, TPTB exhibited higher reactive oxygen species generation efficiency through both types I and II pathways. Due to its excellent biocompatibility and proper lipophilicity, TPTB could be used for long-term cell membrane staining and this staining ability was independent of the change of plasma membrane potential. Furthermore, TPTB could ablate the cancer cells through cell membrane-targeted photodynamic therapy. 展开更多
关键词 Aggregation-induced emission plasma membrane Fluorescent probe Long-term imaging Photodynamic therapy
原文传递
Proteomic Analysis of Rice Plasma Membrane-associated Proteins in Response to Chitooligosaccharide Elicitors 被引量:12
13
作者 Fang Chen Qun Li Zuhua He 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第6期863-870,共8页
Chitooligomers or chitooligosaccharides (COS) are elicitors that bind to the plasma membrane (PM) and elicit various defense responses. However, the PM-bound proteins involved in elicitor-mediated plant defense re... Chitooligomers or chitooligosaccharides (COS) are elicitors that bind to the plasma membrane (PM) and elicit various defense responses. However, the PM-bound proteins involved in elicitor-mediated plant defense responses still remain widely unknown. In order to get more information about PM proteins involved in rice defense responses, we conducted PM proteomic analysis of the rice suspension cells elicited by COS. A total of 14 up- or downregulated protein spots were observed on 2-D gels of PM fractions at 12 h and 24 h after COS incubation. Of them, eight protein spots were successfully identified by MS (mass spectrography) and predicted to be associated to the PM and function in plant defense, including a putative PKN/PRK1 protein kinase, a putative pyruvate kinase isozyme G, a putative zinc finger protein, a putative MAR-binding protein MFP1, and a putative calcium-dependent protein kinase. Interestingly, a COS-induced pM5-like protein was identified for the first time in plants, which is a transmembrane nodal modulator in transforming growth factor-β(TGFβ) signaling in vertebrates. We also identified two members of a rice polyprotein family, which were up-regulated by COS. Our study would provide a starting point for functionality of PM proteins in the rice basal defense. 展开更多
关键词 defense response plasma membrane PROTEOMICS RICE chitooligosaccharide.
原文传递
A critical review on natural compounds interacting with the plant plasma membrane H^(+)-ATPase and their potential as biologicals in agriculture 被引量:5
14
作者 Nanna W.Havshφi Anja T.Fuglsang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第2期268-286,共19页
The plant plasma membrane(PM)H^(+)-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are ... The plant plasma membrane(PM)H^(+)-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are in demand for new sustainable natural growth regulators and as a key enzyme for regulation of transport into the plant cell the PM H^(+)-ATPase is a potential target for these.In this review,we have evaluated the known non-protein natural compounds with regulatory effects on the PM H^(+)-ATPase,focusing on their mechanism of action and their potential as biologicals/growth regulators in plant production of future sustainable agriculture. 展开更多
关键词 BIOLOGICALS cyclic-lipodepsipeptides H^(+)-ATPase H+pump natural compounds PHOSPHATIDYLINOSITOL plasma membrane pore forming compound tenuazonic acid
原文传递
The connection of cytoskeletal network with plasma membrane and the cell wall 被引量:7
15
作者 Zengyu Liu Staffan Persson Yi Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2015年第4期330-340,共11页
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall bi... The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosyn- thesis and modifications, and aim to provide a platform for further studies in this field. 展开更多
关键词 CYTOSKELETON plant cell wall plasma membrane
原文传递
Vacuolar Sorting Receptor (VSR) Proteins Reach the Plasma Membrane in Germinating Pollen Tubes 被引量:5
16
作者 Hao Wang Xiao-Hong Zhuang +2 位作者 Stefan Hillmer David G. Robinson Li-Wen Jiang 《Molecular Plant》 SCIE CAS CSCD 2011年第5期845-853,共9页
Vacuolar sorting receptors (VSRs) are type I integral membrane proteins that mediate the vacuolar transport of soluble cargo proteins via prevacuolar compartments (PVCs) in plants. Confocal immunofluorescent and i... Vacuolar sorting receptors (VSRs) are type I integral membrane proteins that mediate the vacuolar transport of soluble cargo proteins via prevacuolar compartments (PVCs) in plants. Confocal immunofluorescent and immunogold Electron Microscope (EM) studies have localized VSRs to PVCs or multivesicular bodies (MVBs) and trans-Golgi network (TGN) in various plant cell types, including suspension culture cells, root cells, developing and germinating seeds. Here, we provide evidence that VSRs reach plasma membrane (PM) in growing pollen tubes. Both immunofluorescent and immunogold EM studies with specific VSR antibodies show that, in addition to the previously demonstrated PVC/MVB localization, VSRs also localize to PM in lily and tobacco pollen tubes prepared from chemical fixation or high-pressure freezing/frozen substitution. Such a PM localization suggests an additional role of VSR proteins in mediating protein transport to PM and endocytosis in growing pollen tubes. Using a high-speed Spinning Disc Confocal Microscope, the possible fusion between VSR-positive PVC organelles and the PM was also observed in living tobacco pollen tubes transiently expressing the PVC reporter GFP-VSR. In contrast, the lack of a prominent PM localization of GFP-VSR in living pollen tubes may be due to the highly dynamic situation of vesicular transport in this fast-growing cell type. 展开更多
关键词 plasma membrane pollen tube vacuolar sorting receptor.
原文传递
Drought-Stimulated Activity of Plasma Membrane Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Its Catalytic Properties in Rice 被引量:4
17
作者 Zhuang-Qin Duan Lei Bai +4 位作者 Zhi-Guang Zhao Guo-Ping Zhang Fang-Min Cheng Li-Xi Jiang Kun-Ming Chen 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第12期1104-1115,共12页
The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreas... The activity of plasma membrane (PM) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreased leaf relative water content (RWC) and, as a result of drought-induced oxidative stress, the activities of antioxidant enzymes increased significantly. More interestingly, the intensity of applied water stress was correlated with increased production of H2O2 and O2^- and elevated activity of PM NADPH oxidase, a key enzyme of reactive oxygen species generation in plants. Histochemical analyses also revealed increased H2O2 and O2^- production in drought-stressed leaves. Application of diphenylene iodonium (DPI), an inhibitor of PM NADPH oxidase, did not alleviate drought-induced production of H2O2 and O2^-. Catalysis experiments indicated that the rice PM NADPH oxidase was partially fiavin-dependent. The pH and temperature optima for this enzyme were 9.8 and 40 ℃, respectively. In addition, drought stress enhanced the activity under alkaline pH and high temperature conditions. These results suggest that a complex regulatory mechanism, associated with the NADPH oxidase-H2O2 system, is involved in the response of rice to drought stress. 展开更多
关键词 catalytic properties drought stress plasma membrane nicotinamide adenine dinucleotide phosphate oxidase reactive oxygen species rice Oryza .sativa).
原文传递
Actin Dynamics Regulates Voltage-Dependent Calcium-Permeable Channels of the Vicia faba Guard Cell Plasma Membrane 被引量:1
18
作者 Wei Zhang Liu-Min Fan 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第10期912-921,共10页
Free cytosolic Ca^2+ ([Ca^2+]cyt) is an ubiquitous second messenger in plant cell signaling, and [Ca^2+]cyt elevation is associated with Ca^2+-permeable channels in the plasma membrane and endomembranes regulate... Free cytosolic Ca^2+ ([Ca^2+]cyt) is an ubiquitous second messenger in plant cell signaling, and [Ca^2+]cyt elevation is associated with Ca^2+-permeable channels in the plasma membrane and endomembranes regulated by a wide range of stimuli. However, knowledge regarding Ca^2+ channels and their regulation remains limited in planta. A type of voltage- dependent Ca^2+-permeable channel was identified and characterized for the Vicia faba L. guard cell plasma membrane by using patch-clamp techniques. These channels are permeable to both Ba^2+ and Ca^2+, and their activities can be inhibited by micromolar Gd^3+. The unitary conductance and the reversal potential of the channels depend on the Ca^2+ or Ba^2+ gradients across the plasma membrane. The inward whole-cell Ca^2+ (Ba^2+) current, as well as the unitary current amplitude and NPo of the single Ca^2+ channel, increase along with the membrane hyperpolarization. Pharmacological experiments suggest that actin dynamics may serve as an upstream regulator of this type of calcium channel of the guard cell plasma membrane. Cytochalasin D, an actin polymerization blocker, activated the NPo of these channels at the single channel level and increased the current amplitude at the whole-cell level. But these channel activations and current increments could be restrained by pretreatment with an F-actin stabilizer, phalloidin. The potential physiological significance of this regulatory mechanism is also discussed. 展开更多
关键词 actin dynamics calcium-permeable channels guard cell patch clamp plasma membrane Vicia faba.
原文传递
A near-infrared plasma membrane-specific AIE probe for fluorescence lifetime imaging of phagocytosis 被引量:1
19
作者 Ming-Yu Wu Jong-Kai Leung +5 位作者 Chuen Kam Tsu Yu Chou Jia-Li Wang Xueqian Zhao Shun Feng Sijie Chen 《Science China Chemistry》 SCIE EI CSCD 2022年第5期979-988,共10页
Phagocytosis is a biological process that plays a key role in host defense and tissue homeostasis.Efficient approaches for real-time imaging of phagocytosis are highly desired but limited.Herein,an AIE-active near-inf... Phagocytosis is a biological process that plays a key role in host defense and tissue homeostasis.Efficient approaches for real-time imaging of phagocytosis are highly desired but limited.Herein,an AIE-active near-infrared fluorescent probe,named TBTCP,was developed for fluorescence lifetime imaging of phagocytosis.TBTCP could selectively label the cell plasma membrane with fast staining,wash-free process,high signal-to-background ratio,and excellent photostability.Cellular membrane statuses under different osmolarities as well as macrophage phagocytosis of bacteria or large silica particles in early stages could be reported by the fluorescence lifetime changes of TBTCP.Compared with current fluorescence imaging methods,which target the bioenvironmental changes in the late phagocytosis stage,this approach detects the changes in the cell membrane,thus giving a faster response to phagocytosis.This article provides a functional tool to report the phagocytic dynamics of macrophages which may greatly contribute to the studies of phagocytic function-related diseases. 展开更多
关键词 fluorescence lifetime imaging PHAGOCYTOSIS plasma membrane aggregation-induced emission NEAR-INFRARED
原文传递
Molecular Cloning and Distribution of a Plasma Membrane Calcium ATPase Homolog from the Pearl Oyster Pinctada fucata 被引量:1
20
作者 王雪 范为民 +1 位作者 谢莉萍 张荣庆 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第4期439-446,共8页
Plasma membrane calcium ATPase (PMCA) plays a critical role in transporting Ca^2+ out of the cytosol across the plasma membrane which is essential both in keeping intracellular Ca^2+ homeostasis and in biominerali... Plasma membrane calcium ATPase (PMCA) plays a critical role in transporting Ca^2+ out of the cytosol across the plasma membrane which is essential both in keeping intracellular Ca^2+ homeostasis and in biomineralization. In this paper we cloned and localized a gene encoding PMCA from the pearl oyster Pinctada fucata. This PMCA shares similarity with other published PMCAs within the functional domains. Reverse transcription-polymerase chain reaction analysis shows that it is expressed ubiquitously. Furthermore, in situ hybridization reveals that it is expressed in the inner epithelial cells of the outer fold and in the outer epithelial cells of the middle fold, as well as the edge near the shell, which suggests that PMCA may be involved in calcified layer formation. The identification and characterization of oyster PMCA can help to further understand the structural and functional properties of molluscan PMCA, as well as the mechanism of maintaining Ca^2+ homeostasis and the mechanism of mineralization in pearl oyster. 展开更多
关键词 BIOMINERALIZATION Ca^2+ homeostasis pearl oyster plasma membrane calcium ATPase Pinctada fucata
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部