To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 3...To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.展开更多
Coatings on Mg alloys were prepared using NaOH + Na2SiO3 as basic electrolyte containing electrolyte of Na2SiF6 or NaF. EPP treatment was carried out on AZ31 Mg alloys matrix under a hybrid voltage of AC of 200 V comb...Coatings on Mg alloys were prepared using NaOH + Na2SiO3 as basic electrolyte containing electrolyte of Na2SiF6 or NaF. EPP treatment was carried out on AZ31 Mg alloys matrix under a hybrid voltage of AC of 200 V combined with DC of 260 V for 30 min. Structural and morphological analyses of ceramic coatings were analyzed by XRD and SEM. Wear and hardness of coatings were measured by pin-on disk test and Vickers hardness test. The coatings formed in Na2SiF6 and NaF electrolytes were mainly composed of MgO and Mg2SiO4. The measured micro-hardness of coating formed in Na2SiF6 electrolyte was found to be over HV 1100, while, coating formed in NaF electrolyte possessed micro-hardness of HV ~900. These results show that the mechanical properties of AZ31 B Mg alloys can be enhanced by the proper selection of electrolyte agent.展开更多
One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal fo...One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode.展开更多
Plasma treatments of boron-doped nano-crystalline diamond (NCD) thin films were carried out in order to improve their electrical properties of the films. Boron-doped NCD thin films were fabricated on well polished p...Plasma treatments of boron-doped nano-crystalline diamond (NCD) thin films were carried out in order to improve their electrical properties of the films. Boron-doped NCD thin films were fabricated on well polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor, then they were processed in methane, ar- gon, hydrogen and B2H~ (0.1% diluted by H~) plasmas, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) results show that the surface morphology changed lit- tle during the 10 min treatment. Secondary ion mass spectroscopy (SIMS) results indicate that B2H6 plasma was efficient for increasing boron concentration in NCD films, while the carrier anal- yses demonstrates that CH4 plasma processing was effective to activate the dopants and resulted in good electrical properties.展开更多
High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensiti...High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensitivity are achieved in the PbSe-based photodetector, reaching maximum values of 7.6 × 10^(9)cm·Hz^(1/2)/W and 1.723 A/W, respectively. Compared with thermal annealing, plasma sensitization makes the sensitization easier and significantly improves the performance.展开更多
This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyap...This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.展开更多
In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active rad...In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.展开更多
The urea oxidization reaction(UOR)is an important anodic reaction in electro-catalytic energy conversion.However,the sluggish reaction kinetics and complex catalyst transformation in electrocatalysis require activity ...The urea oxidization reaction(UOR)is an important anodic reaction in electro-catalytic energy conversion.However,the sluggish reaction kinetics and complex catalyst transformation in electrocatalysis require activity improvement and better mechanistic understanding of the state-of-the-art Ni(OH)_(2) catalyst.Herein,by utilizing low-temperature argon(Ar)plasma processing,tooth-wheel Ni(OH)_(2) nanosheets self-supported on Ni foam(Ni(OH)_(2)-Ar)are demonstrated to have improved UOR activity compared to conventional Ni(OH)_(2).The theoretical assessment confirms that the edge has a smaller cation vacancy formation energy than the basal plane,consequently explaining the structural formation.Operando and quasi-operando methods are employed to investigate the dynamic evolution of the Ni(OH)_(2) film in UOR.The crucial dehydrogenation products of Ni(OH)_(5)O^(-)intermediates are identified to be stable on the etched edge and explain the enhanced UOR in the low potential region.In addition,the dynamic active sites are monitored to elucidate the reaction mechanism in different potential ranges.展开更多
Hydrogenated nanocrystalline silicon carbide (SIC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influ...Hydrogenated nanocrystalline silicon carbide (SIC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.展开更多
This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry...This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.展开更多
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in th...To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m^3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 μm, and the tap density is increased from 2.7 to 6.2 g/cm^3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.展开更多
Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During...Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.展开更多
The effect of plasma-processed air(PPA)treatment with different conditions(time,power andflow rate)on the inactivation of Escherichia coli(E.coli)in button mushroom was evaluated.Response surface methodology(RSM)was a...The effect of plasma-processed air(PPA)treatment with different conditions(time,power andflow rate)on the inactivation of Escherichia coli(E.coli)in button mushroom was evaluated.Response surface methodology(RSM)was applied to optimize PPA treatments on the E.coli of button mushrooms.According to the response surface analysis,the optimal treatment parameters were a treatment time of 12 min,treatment power of 90 W and flow rate of 1.2 l min-1.As with verifying tests from the optimization exercise,the number of E.coli reduced by 5.27 log CFU/g at the determined optimum conditions.The scanning electronic microscopy(SEM)micrography showed that the surface of the E.coli was significantly changed under the optimized PPA treatment.Quality parameters of button mushrooms treated at the determined optimum conditions were compared with untreated samples during the storage for 12 d at 4°C?±?1°C.The PPA treatment was found to be effective in inhibiting microbes and preserving postharvest quality in button mushrooms,and these results suggested PPA treatment may provide an alternative for the sterilization of foodborne and maintaining postharvest of fruits and vegetables.展开更多
In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superallo...In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.展开更多
As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge proce...As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.展开更多
In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were...In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.展开更多
The surface of the cotton fabric was modified using a direct current(DC)air plasma treatment and hence enhances its hydrophilicity.The Box-Behnken approach(design expert software)was used to optimise the input process...The surface of the cotton fabric was modified using a direct current(DC)air plasma treatment and hence enhances its hydrophilicity.The Box-Behnken approach(design expert software)was used to optimise the input process parameters.The sample prepared under optimized condition is subjected to ATR-FTIR and Field Emission Scanning Electron Microscopy(FESEM)studies in order to determine the changes in hydrogen bond energies(EH),Total Crystallinity Index(TCI),Hydrogen Bond Intensity(HBI),Lateral Order Index(LOI),functionalization,lattice parameters(a,b,c&β),degree of crystallinity(in%)and surface etching.The ageing of this sample has been studied by comparing the values of carboxyl content and AC-C/AC-O-C ratio calculated using data extracted from ATR-FTIR spectra of the sample recorded periodically for one month.展开更多
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.th...This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O_2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.展开更多
The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidifica...The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidification, spray deposition, mechanical alloying, plasma Processing and vapor deposition.展开更多
A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simul...A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic cMculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.展开更多
文摘To meet the performance requirements of hot forging die heat resistant layer, the Ni60-SiC coating, Ni60-Cr3C2 coating, and Ni60-WC coating were prepared using W6Mo5Cr4V2 as substrate material with 30%SiC, 10%Cr3C2, 30%WC powder by means of plasma spraying and plasma spray re-melting and plasma spray welding, respectively. Microstructure of each carbide coating was analyzed, micro-hardness was tested, and mainly thermal parameters of coating were detected. The experimental results show that using plasma spray welding, the performance of 70%Ni60/30%SiC powder is the best, and its micro-hardness can achieved 1100HV, showing good thermal-physical property.
基金Project(2011-0030058) supported by the National Research Foundation of Korea(NRF) grant funded by the Korea Government(MSIP)Project supported by the MSIP(Ministry of Science,ICT&Future Planning),KoreaProject(NIPA-2013-H0301-13-2009) supported by the ITRC(Information technology Research Center) support program supervised by the NIPA(National IT industry Promotion Agency),Korea
文摘Coatings on Mg alloys were prepared using NaOH + Na2SiO3 as basic electrolyte containing electrolyte of Na2SiF6 or NaF. EPP treatment was carried out on AZ31 Mg alloys matrix under a hybrid voltage of AC of 200 V combined with DC of 260 V for 30 min. Structural and morphological analyses of ceramic coatings were analyzed by XRD and SEM. Wear and hardness of coatings were measured by pin-on disk test and Vickers hardness test. The coatings formed in Na2SiF6 and NaF electrolytes were mainly composed of MgO and Mg2SiO4. The measured micro-hardness of coating formed in Na2SiF6 electrolyte was found to be over HV 1100, while, coating formed in NaF electrolyte possessed micro-hardness of HV ~900. These results show that the mechanical properties of AZ31 B Mg alloys can be enhanced by the proper selection of electrolyte agent.
基金supported by National Natural Science Foundation of China(Nos.51175123 and 51105112)National Science and Technology Major Project of China(No.2013ZX04006011-205)
文摘One of the major advantages of utilizing atmospheric pressure plasma processing (APPP) technology to fabricate ultra-precision optics is that there is no subsurface damage during the process. In APPP, the removal footprint and removal rate are critical to the capability and efficiency of the figuring of the optical surface. In this paper, an atmospheric plasma torch, which can work in both remote mode and contact mode, is presented. The footprints and the removal rates of both modes are compared by profilometer measurements. The influences of process recipes and substrate thickness for both modes are investigated through a series of experiments. When the substrate is thinner than 12 mm, the removal rate in contact mode is higher. However, the removal rate and width of the footprint decrease dramatically as the substrate thickness increases in contact mode.
基金supported by the Research Fund of Hubei Provincial Department of Education of China (No.Q20081505)
文摘Plasma treatments of boron-doped nano-crystalline diamond (NCD) thin films were carried out in order to improve their electrical properties of the films. Boron-doped NCD thin films were fabricated on well polished poly-crystalline diamond (PCD) thick films in a microwave plasma enhanced chemical vapor deposition (MPCVD) reactor, then they were processed in methane, ar- gon, hydrogen and B2H~ (0.1% diluted by H~) plasmas, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) results show that the surface morphology changed lit- tle during the 10 min treatment. Secondary ion mass spectroscopy (SIMS) results indicate that B2H6 plasma was efficient for increasing boron concentration in NCD films, while the carrier anal- yses demonstrates that CH4 plasma processing was effective to activate the dopants and resulted in good electrical properties.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61605207, 61704172, and 61705229)the Key Research and Development Plan of the Ministry of Science and Technology of China (Grant No. 2017YFE0131900)+1 种基金the Western Light Program of the Chinese Academy of SciencesYouth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018416)。
文摘High quality PbSe film was first fabricated by a thermal evaporation method, and then the effect of plasma sensitization on the PbSe film was systemically investigated. Typical detectivity and significant photosensitivity are achieved in the PbSe-based photodetector, reaching maximum values of 7.6 × 10^(9)cm·Hz^(1/2)/W and 1.723 A/W, respectively. Compared with thermal annealing, plasma sensitization makes the sensitization easier and significantly improves the performance.
基金supported by the Science Committee of RK MES under the Grant No. AP05130525。
文摘This paper describes the development of an intelligent automated control system of a robot manipulator for plasma treatment of medical implants with complex shapes.The two-layer coatings from the Ti wire and hydroxyapatite powders are applied on the surface of Ti medical implants by microplasma spraying to increase the biocompatibility of implants.The coating process requires precise control of a number of parameters,particularly the plasma spray distance and plasma jet traverse velocity.Thus,the development of the robotic plasma surface treatment involves automated path planning.The key idea of the proposed intelligent automatic control system is the use of data of preliminary three-dimensional (3D) scanning of the processed implant by the robot manipulator.The segmentation algorithm of the point cloud from laser scanning of the surface is developed.This methodology is suitable for robotic 3D scanning systems with both non-contact laser distance sensors and video cameras,used in additive manufacturing and medicine.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51175123 and 51105112)
文摘In order to get ultra-smooth fused silica surface without subsurface damage efficiently, the atmospheric pressure plasma processing( APPP) method has been developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms,so the subsurface damage caused by contact stress can be avoided and atomic-level precision can be ensured. In this paper,based on the spectral quantitative analysis theory,the influence laws on material removal rate by the key factors of APPP including the flow rate of reaction gases,the input power,the processing distance and time are discussed. In addition,the results that APPP can remove the damaged surface layer and do not introduce secondary damage are proved via the nanoindentation technology.
基金the financial support from City University of Hong Kong Strategic Research Grant(SRG)(7005505)the National Natural Science Foundation of China(51601136 and 51604202)。
文摘The urea oxidization reaction(UOR)is an important anodic reaction in electro-catalytic energy conversion.However,the sluggish reaction kinetics and complex catalyst transformation in electrocatalysis require activity improvement and better mechanistic understanding of the state-of-the-art Ni(OH)_(2) catalyst.Herein,by utilizing low-temperature argon(Ar)plasma processing,tooth-wheel Ni(OH)_(2) nanosheets self-supported on Ni foam(Ni(OH)_(2)-Ar)are demonstrated to have improved UOR activity compared to conventional Ni(OH)_(2).The theoretical assessment confirms that the edge has a smaller cation vacancy formation energy than the basal plane,consequently explaining the structural formation.Operando and quasi-operando methods are employed to investigate the dynamic evolution of the Ni(OH)_(2) film in UOR.The crucial dehydrogenation products of Ni(OH)_(5)O^(-)intermediates are identified to be stable on the etched edge and explain the enhanced UOR in the low potential region.In addition,the dynamic active sites are monitored to elucidate the reaction mechanism in different potential ranges.
基金Natural Science Foundation of Hebei Province, China (503129 and E2006000999)
文摘Hydrogenated nanocrystalline silicon carbide (SIC) thin films were deposited on the single-crystal silicon substrate using the helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique. The influences of magnetic field and hydrogen dilution ratio on the structures of SiC thin film were investigated with the atomic force microscopy (AFM), the Fourier transform infrared absorption (FTIR) and the transmission electron microscopy (TEM). The results indicate that the high plasma activity of the helicon wave mode proves to be a key factor to grow crystalline SiC thin films at a relative low substrate temperature. Also, the decrease in the grain sizes from the level of microcrystalline to that of nanocrystalline can be achieved by increasing the hydrogen dilution ratios. Transmission electron microscopy measurements reveal that the size of most nanocrystals in the film deposited under the higher hydrogen dilution ratios is smaller than the doubled Bohr radius of 3C-SiC (approximately 5.4 nm), and the light emission measurements also show a strong blue photoluminescence at the room temperature, which is considered to be caused by the quantum confinement effect of small-sized SiC nanocrystals.
基金Project(2016KJXX-78)supported by the Shaanxi Youth Science and Technology New Star Project,ChinaProject(2016KTCQ01-113)supported by the Shaanxi Science and Technology Co-ordination and Innovation Project,China+1 种基金Project(51604228)supported by the National Natural Science Foundation of ChinaProject supported by the Open Fund of State Key Laboratory for Powder Metallurgy,Central South University,China
文摘This study aimed to produce spherical TiNi powders suitable for additive manufacturing by plasma rotating electrode process(PREP).Scanning electron microscopy,X-ray diffractometry and differential scanning calorimetry were used to investigate the surface and inner micro-morphology,phase constituent and martensitic transformation temperature of the surface and inner of the atomized TiNi powders with different particle sizes.The results show that the powder surface becomes smoother and the grain becomes finer gradually with decreasing particle size.All the powders exhibit a main B2-TiNi phase,while large powders with the particle size≥178μm contain additional minor Ti2Ni and Ni3Ti secondary phases.These secondary phases are a result of the eutectoid decomposition during cooling.Particles with different particle sizes have experienced different cooling rates during atomization.Various cooling rates cause different martensitic transformation temperatures and routes of the TiNi powders;in particular,the transformation temperature decreases with decreasing particle size.
基金financially supported by the 2012 Western Materials Innovation Foundation of China (No. XBCL-1-06)the Science and Technology Coordinating Innovative Engineering Project of Shaanxi Province of China (No. 2014KTCQ01-35)+1 种基金the Natural Science Foundation of Shaanxi Province of China (No. 2014JM6226)the Specialized Research Fund of Education Commission of Shaanxi Province of China (No. 2013JK0905)
文摘To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency(RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m^3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 μm, and the tap density is increased from 2.7 to 6.2 g/cm^3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.
基金Technology Innovation Foundation of Middle-minor Enterprises of Science and Technology from Ministryof Science and Technology (No. 19995103020074, 20003403023018)
文摘Spherical Bi2O3 powder prepared by plasma chemical vapor reaction and aqueous chemical precipitation is studied. The superfine spherical Bi2O3 powder with an average diameter of 1 μm is made by plasma process. During the precipitation process, the micrograph of the Bi2O3 powder can be controlled through the reaction temperature, the rate of addition of the precipitation reagent, the reaction time and the amount of the dispersant. Accordingly, spherical Bi2O3 powder with diameters ranging from 2μm to 3μm is prepared. The spherical Bi2O3 particles have such advantages as uniform size distribution and excellent dispersing property. ZnO varistors made from the resultant powder exhibit properties of a low discharge voltage ratio, great eligibility coefficient measured by a rectangle wave of 2 ins 800 A and good stability in the above characteristics.
基金supported by National Natural Science Foundation of China(No.31972144)supported by Beijing University of Agriculture(BAU)。
文摘The effect of plasma-processed air(PPA)treatment with different conditions(time,power andflow rate)on the inactivation of Escherichia coli(E.coli)in button mushroom was evaluated.Response surface methodology(RSM)was applied to optimize PPA treatments on the E.coli of button mushrooms.According to the response surface analysis,the optimal treatment parameters were a treatment time of 12 min,treatment power of 90 W and flow rate of 1.2 l min-1.As with verifying tests from the optimization exercise,the number of E.coli reduced by 5.27 log CFU/g at the determined optimum conditions.The scanning electronic microscopy(SEM)micrography showed that the surface of the E.coli was significantly changed under the optimized PPA treatment.Quality parameters of button mushrooms treated at the determined optimum conditions were compared with untreated samples during the storage for 12 d at 4°C?±?1°C.The PPA treatment was found to be effective in inhibiting microbes and preserving postharvest quality in button mushrooms,and these results suggested PPA treatment may provide an alternative for the sterilization of foodborne and maintaining postharvest of fruits and vegetables.
文摘In order to investigate the influence of processing parameters on the granularity distribution of superalloy powders during the atomization of plasma rotating electrode processing (PREP), in this paper FGH95 superalloy powders is prepared under different processing conditions by PREP and the influence of PREP processing parameters on the granularity distribution of FGH95 superalloy powders is discussed based on fractal geometry theory. The results show that with the increase of rotating velocity of the self-consuming electrode, the fractal dimension of the granularity distribution increases linearly, which results in the increase of the proportion of smaller powders. The change of interval between plasma gun and the self-consuming electrode has a little effect on the granularity distribution, also the fractal dimension of the granularity distribution changed a little correspondingly.
基金supported by National Natural Science Foundation of China(Nos.11205202,21203204 and 11175214)Natural Science Foundation of Anhui Province,China (No.1308085QA09)
文摘As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.
文摘In this work, the in-situ TiC panicles reinforced composite coating was prepared by plasma transferred arc process on the surface of Q235 steel. Microstructures, phase composition and wear property of the coating were investigated. The results showed that the composite coating consisted mainly of T-Ni, TiC, Cr23C6, Cr7C3, Ni3Si, CrB, Cr5B3 and FeNi3 phases, and was characterized by fine TiC panicles embedded in Ni matrix. The wear resistance of composite coating was significantly improved compared with that of the steel substrate. The wear volume loss of the substrate was 443 mm3, which was about 9 times as that of in-situ TiC particles reinforced composite coating (49 mm3 ). It is mainly attributed to the presence of chromium carbide particles and in-situ TiC particles and their favorable combination with Ni matrix.
文摘The surface of the cotton fabric was modified using a direct current(DC)air plasma treatment and hence enhances its hydrophilicity.The Box-Behnken approach(design expert software)was used to optimise the input process parameters.The sample prepared under optimized condition is subjected to ATR-FTIR and Field Emission Scanning Electron Microscopy(FESEM)studies in order to determine the changes in hydrogen bond energies(EH),Total Crystallinity Index(TCI),Hydrogen Bond Intensity(HBI),Lateral Order Index(LOI),functionalization,lattice parameters(a,b,c&β),degree of crystallinity(in%)and surface etching.The ageing of this sample has been studied by comparing the values of carboxyl content and AC-C/AC-O-C ratio calculated using data extracted from ATR-FTIR spectra of the sample recorded periodically for one month.
基金the Czech Science Foundation(Project No.104/08/02290)the Czech Ministry of Industry and Trade(Project CZ.1.03/5.1.00/12.00010)the Czech Ministry of Education(Project MSM0021622411)
文摘This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O_2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.
文摘The synthesis, processing and mechanical properties of the light metals, aluminum,magnesium and titanium Produced by advanced techniques are reviewed. Synthesis techniques to be addressed will include rapid solidification, spray deposition, mechanical alloying, plasma Processing and vapor deposition.
基金supported by the Program for Innovative Research Team of High Education in Liaoning province of China (No.2009T055)
文摘A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic cMculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results.