Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil wa...Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.展开更多
Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plas...Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.展开更多
Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spat...Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.展开更多
Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine...Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine contents of seedlings with or without leaf burning induced by high-temperature plastic mulching film were tested at two independent sites in 2015 and 2016 to identify the influence of leaf burning on seedling growth. The results showed that the growth of seedlings with leaf burning was improved with increased leaf area, leaf number and plant height compared to those without leaf burning, combined with an increased seedling survival rate at two sites in two years. In seedlings with leaf burning, the contents of fructose and glucose increased and peaked at 11:00 and 13:00 in the leaf and root, respectively, with an increased root nicotine content beginning at 13:00, highlighting the signalling role of sugars. Activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were all increased in seedlings with leaf burning. More plant biomass was allocated to roots in seedlings with leaf burning with increased root volume compared to control seedlings, which might facilitate the absorption of water and nutrients from the soil. Our findings demonstrate that high-temperature plastic mulching film-induced leaf burning not inhibited but benefited seedling survival and growth, suggesting that the time and labour-consuming manual plucking of burnt leaves can be avoided during tobacco cultivation.展开更多
Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecolo...Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecological and environmental problems.In order to improve the resource use efficiency in these areas,we investigated the effects of different irrigation amounts(400(I1),300(I2)and 200(I3)mm)and nitrogen application rates(300(F1)and 150(F2)kg N/hm^(2))on water consumption,salt variation and resource use efficiency of spring maize(Zea mays L.)in the Hetao Irrigation District(HID)of Northwest China in 2017 and 2018.Result showed that soil water contents were 0.2%-8.9%and 13.9%-18.1%lower for I2 and I3 than for I1,respectively,but that was slightly higher for F2 than for F1.Soil salt contents were 7.8%-23.5%and 48.5%-48.9%lower for I2 than for I1 and I3,but that was 1.6%-5.5%higher for F1 than for F2.Less salt leaching at the early growth stage(from sowing to six-leaf stage)and higher salt accumulation at the peak growth stage(from six-leaf to tasseling stage and from grain-filling to maturity stage)resulted in a higher soil salt content for I3 than for I1 and I2.Grain yields for I1 and I2 were significantly higher than that for I3 and irrigation water use efficiency for I2 was 14.7%-34.0%higher than that for I1.Compared with F1,F2 increased the partial factor productivity(PFP)of nitrogen fertilizer by more than 80%.PFP was not significantly different between I1F2 and I2F2,but significantly higher than those of other treatments.Considering the goal of saving water and nitrogen resources,and ensuring food security,we recommended the combination of I2F2 to ensure the sustainable development of agriculture in the HID and other similar arid saline areas.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop...Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.展开更多
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield,...During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.展开更多
Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of ...Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.展开更多
[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarca...[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.展开更多
Plastic mulch is commonly used with micro-irrigation in developed countries;however,Chinese farmers use plastic mulch on a vast scale independent of micro-irrigation.For the past three decades,China’s land area in pl...Plastic mulch is commonly used with micro-irrigation in developed countries;however,Chinese farmers use plastic mulch on a vast scale independent of micro-irrigation.For the past three decades,China’s land area in plastic mulch has exceeded the world’s total land area in micro-irrigation.We report results from the water-scarce region of Minqin County,where 87%of Chinese farmers interviewed responded that they use plastic mulch to conserve water and 53%to increase yields.Survey results indicated the desire to conserve water through the use of plastic mulch to be statistically equivalent to the desire to increase yields.Responses to interviews and surveys indicate that farmers perceive water savings of 24-26%when plastic mulch is used.Interview and survey responses suggest farming families are shifting to purchasing wheat from outside the region;a potential import of"virtual water"into this water-scarce region.展开更多
Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic fil...Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.展开更多
To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in ...To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.展开更多
To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fiel...To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields at Changwu station in Shaanxi,a semi-humid region,between 2012 and 2013.Gas samples were taken simultaneously every one week from non-mulched(BP) and plastic film-mulched(FM) field plots.The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season(MS).Both carbon dioxide(CO_2) and nitrous oxide(N_2O) concentrations increased with increasement of soil depth,while the methane(CH_4)concentrations decreased with increasement of soil depth.A strong seasonal variation pattern was found for CO_2 and N_2O concentrations,as compared to an inconspicuous seasonal variation of CH_4 concentrations.The mean CO_2 and N_2O concentrations were higher,but the mean CH_4 concentration in the soil profiles was lower in the FM plots than in the BP plots.The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO_2and N_2O from the soil,and promoted CH_4 absorption by the soil,particularly during the MS.展开更多
The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF)....The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF).The effect of MPF on root starch and its composition,the activity of starch synthesis enzymes,and other quality-related parameters were investigated in two purple flesh sweet potato cultivars,Jishu 18 and Ayamurasaki(Aya).The results indicated that root dry matter,anthocyanin content,adenosine triphosphate(ATP),and starch content were higher in both cultivars under the MPF treatment than those under the control treatment.The root adenosine diphosphate glucose pyrophosphorylase/uridine diphosphate glucose pyrophosphorylase(ADPGPPase/UDPGPPase)activity and adenosine triphosphatease(ATPase)activity were increased using MPF.However,under the MPF treatment,the amylose content,soluble sugar content,and granule-bound synthase(GBSS)activity increased in Jishu 18 but decreased in Aya,and the amylopectin content,protein content,and soluble starch synthase(SSS)activity decreased in Jishu 18 but increased in Aya.Therefore,MPF seems benifit to improve the quality of sweet potato,but the effects of this treatment condition may be dependent on the cultivar.展开更多
In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investiga...In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic展开更多
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi...The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.展开更多
Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage...Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage method for plastic film mulch systems. We conducted a two-year field experiment to explore the impact of three tillage treatments-rotary tillage before ridge–furrow plastic film mulch(MR), no-tillage before ridge–furrow plastic film mulch(MZ), and plow tillage before ridge–furrow plastic film mulch(MP)-on soil total nitrogen, available nitrogen, root stratification structure,nitrogen transfer and utilization, and maize yield. The results showed that MP had better soil quality than either MR or MZ over 2019 and 2020, with higher nitrate-nitrogen and total nitrogen in the 0–40 cm soil layer. MP improved the soil physicochemical properties more than the other treatments, producing significantly higher root numbers and root biomass for the aerial and underground nodal roots than MR and MZ. At harvest, MP had the highest root biomass density,root length density, and root surface area density in the different soil layers(0–20, 20–40, and 0–40 cm). Significant correlations occurred between root biomass and aboveground nitrogen accumulation during maize growth. During grain filling, MP had the greatest nitrogen transfer amount, significantly increasing root and aboveground nitrogen transfer by 19.63–45.82% and 11.15–24.56%, respectively, relative to the other treatments. MP significantly produced 1.36–26.73%higher grain yields and a higher grain crude protein content at harvest than MR and MZ. MP also had higher values for the nitrogen harvest index, nitrogen uptake efficiency, and partial factor productivity of nitrogen fertilizer than MR and MZ.In conclusion, plow tillage combined with a ridge–furrow plastic film mulch system facilitated maize root development and improved nitrogen utilization, thereby increasing maize yield more than the other treatments.展开更多
A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE...A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.展开更多
基金supported by the National Key R&D Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250).
文摘Amplifying drought stress and high precipitation variability impair dryland wheat production.These problems can potentially be minimized by using plastic mulch(PM)or straw mulch(SM).Therefore,wheat grain yield,soil water storage,soil temperature and water-use productivity of PM and SM treatments were compared with no mulch(CK)treatment on dryland wheat over a period of eight seasons.Compared to the CK treatment,PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%,respectively.Compared to the CK treatment,SM treatment significantly decreased soil daily temperature by 0.57,0.60 and 0.48℃ for the whole seasons,growing periods and summer fallow periods,respectively.In contrast,compared to the CK treatment,PM treatment increased soil daily temperature by 0.44,0.51 and 0.27℃ for the whole seasons,growing periods and summer fallow periods,respectively.Lower soil temperature under SM allowed greater soil water storage than under PM.Soil water storage pre-seeding was 17%greater under the SM than under the PM treatment.Soil water storage post-harvest was similar for the PM and SM treatments,but evapotranspiration was 4.5%higher in the SM than in the PM treatment.Consequently,water-use productivity was 6.6%greater under PM than under the SM treatment.Therefore,PM treatment increased dryland wheat yield and water-use productivity,while straw mulch increased soil water storage.
基金funded by the National Natural Science Foundation of China(31471455,31000692 and 31070002)the Fundamental Research Funds for National Public Research Institutions,China(ZYQHS2015-25)the Beijing Natural Science Foundation,China(5152017)
文摘Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.
基金supported by the National 973 project (2009CB421302)the National Project (2007BAC03A0604)the key National Natural Science Foundation (40830640)
文摘Effects of soil moisture on cotton root length density (total root length per unit soil volume) and yield under drip irrigation with plastic mulch were studied through field experiments. The results indicate that spatial distributions of root length density of cotton under various water treatments were basically similar. Horizontally, both root length densities of cotton in wide and narrow rows were similar, and higher than that between mulches. Vertically, root length density of cotton decreased with increasing soil depth. The distribution of root length density is different under different irrigation treatments. In conditions of over-irrigation, the root length density of cotton between mulches would increase. However, it would decrease in both the wide rows and narrow rows. The mean root length density of cotton increased with increasing irrigation water. Water stress caused the root length density to increase in lower soil layers. There is a significant correlation between root length density and yields of cotton at the flower-boll and wadding stages. The regression between irrigation amount and yield of cotton can be expressed as y = -0.0026x2+18.015x-24845 (R2 = 0.959). It showed that the irrigation volume of 3,464.4 m3/hm2 led to op-timal root length density. The yield of cotton was 6,360 .8 kg/hm2 under that amount of irrigation.
基金supported by the Science and Technology Foundation of Guizhou Province,China (20146015-2,20152099 and 20161097)the Special Fund for Excellent Young Talents of Guizhou Province,China (201534)the Foundation of Guizhou Academy of Tobacco Science,China (GZYKS2018-02)
文摘Solving high-temperature plastic mulching film-induced leaf burning in the first week during tobacco cultivation would take much time and effort. In the present study, the growth as well as the leaf sugar and nicotine contents of seedlings with or without leaf burning induced by high-temperature plastic mulching film were tested at two independent sites in 2015 and 2016 to identify the influence of leaf burning on seedling growth. The results showed that the growth of seedlings with leaf burning was improved with increased leaf area, leaf number and plant height compared to those without leaf burning, combined with an increased seedling survival rate at two sites in two years. In seedlings with leaf burning, the contents of fructose and glucose increased and peaked at 11:00 and 13:00 in the leaf and root, respectively, with an increased root nicotine content beginning at 13:00, highlighting the signalling role of sugars. Activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) were all increased in seedlings with leaf burning. More plant biomass was allocated to roots in seedlings with leaf burning with increased root volume compared to control seedlings, which might facilitate the absorption of water and nutrients from the soil. Our findings demonstrate that high-temperature plastic mulching film-induced leaf burning not inhibited but benefited seedling survival and growth, suggesting that the time and labour-consuming manual plucking of burnt leaves can be avoided during tobacco cultivation.
基金This work was supported by the National Natural Science Foundation of China(51879224,51609237)the Key Research and Development Projects of Shaanxi Province,China(2019NY-190).
文摘Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecological and environmental problems.In order to improve the resource use efficiency in these areas,we investigated the effects of different irrigation amounts(400(I1),300(I2)and 200(I3)mm)and nitrogen application rates(300(F1)and 150(F2)kg N/hm^(2))on water consumption,salt variation and resource use efficiency of spring maize(Zea mays L.)in the Hetao Irrigation District(HID)of Northwest China in 2017 and 2018.Result showed that soil water contents were 0.2%-8.9%and 13.9%-18.1%lower for I2 and I3 than for I1,respectively,but that was slightly higher for F2 than for F1.Soil salt contents were 7.8%-23.5%and 48.5%-48.9%lower for I2 than for I1 and I3,but that was 1.6%-5.5%higher for F1 than for F2.Less salt leaching at the early growth stage(from sowing to six-leaf stage)and higher salt accumulation at the peak growth stage(from six-leaf to tasseling stage and from grain-filling to maturity stage)resulted in a higher soil salt content for I3 than for I1 and I2.Grain yields for I1 and I2 were significantly higher than that for I3 and irrigation water use efficiency for I2 was 14.7%-34.0%higher than that for I1.Compared with F1,F2 increased the partial factor productivity(PFP)of nitrogen fertilizer by more than 80%.PFP was not significantly different between I1F2 and I2F2,but significantly higher than those of other treatments.Considering the goal of saving water and nitrogen resources,and ensuring food security,we recommended the combination of I2F2 to ensure the sustainable development of agriculture in the HID and other similar arid saline areas.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金supported by the National Natural Science Foundation of China (51909228 and 52209071)the “High-level Talents Support Program” of Yangzhou University+2 种基金“Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education of China (HZKY20220115)the China Postdoctoral Science Foundation (2020M671623)the “Blue Project” of Yangzhou University。
文摘Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
文摘During the 2022 growing season (August to November) at the Federal University of Technology, Minna School farm, Niger State, an experiment was conducted to investigate the influence of mulching on Okras growth, yield, and moisture content was examined across four distinct growth stages (initial, development, mid, and late) and at varying soil depths (0 - 30 cm and 30 - 60 cm). The study employed a randomised complete block design with four replications, encompassing control (T0), groundnut shells mulch (T1), black polythene mulch (T2), and white polythene mulch (T3) as treatments. The highest average Okra fresh pod yield, amounting to 23.4 t/ha, was achieved by implementing white plastic mulch, contrasting with the control treatment, which yielded the lowest at 22 t/ha. Notably, the control plots exhibited yield reductions of up to 32% compared to the plots employing white plastic mulching. The utilisation of mulch had a notable impact on the overall crop yield, with the superior quality evident in the treatment employing white plastic mulch (26 t/ha). The control treatment exhibited the lowest quality at 24.3 t/ha. Groundnut shell mulch influenced moisture conservation, but no significant variance was observed compared to the control plots. Therefore, the study suggests that polythene mulch may be the most suitable type to enhance the quality of okra production by conserving soil moisture. Among the biodegradable and non-biodegradable mulches used in this study, white polythene mulch was the most effective.
基金Supported by National Sweet Potato Industrial Technology System(CARS-11-C-16)~~
文摘Field experiments were carried out to study the effects of plastic film mulching on soil physical characters, including soil temperature, soil moisture content and soil bulk density, and yield and yield components of sweet potato. The results showed that plastic filming mulching increased soil temperature. Considering the soil temperature-increasing effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. However, with the deepening of soil layer, the warming effect of plastic film mulching was weakened. Black or white plastic film mulching was conducive to low T/R value, especially in the early growth stage of sweet potato. Plastic film mulching significantly improved the storage root yield of sweet potato. In terms of yield-improving effect, the treatments ranked as black plastic film treatment 〉 white plastic film treatment 〉 control. The storage root num- ber per plant showed a downward trend, but the weight of single storage root was increased.
基金Supported by National State Supporting Program(2012BAD40B04-3)Guangxi Bagu Scholar Program(No.[2013]3)~~
文摘[Objective] The effects of different plastic films mulching on soil temperature and moisture, and growth and yield of sugarcane were discussed in order to provide references for using different plastic film in sugarcane pro-duction. [Method]Four kinds of plastic films viz., normal colorless transparent plastic film, milky photodegradation weeding plastic film, black plastic film and gray-black plastic film were used in sugarcane cultivation by using no film mulching as the control. Soil temperature and moisture were measured during plastic film mulching period, and sugarcane agronomic traits such as emergence rate, tillering rate, plant hight, stalk diameter and effective stalk number were investigated during growth period, the cane yield and economic benefits were calculated during harvest period. [Result] The results showed that plastic film mulching could significantly increase soil temperature and moisture. Com-pared with the control, soil temperature was increased by 0.3-0.8 ℃ in three plastic films mulching treatment except for gray-black plastic film mulching. The soil moisture of all mulching treatments was 10.1%-17.4% higher than the control. Furthermore, the seedling emergence rate, tillering rate, effective stalk number and cane yield also could be improved using plastic film mulching,which were increased by 0.8%-9.9%, 20.6%-34.9%, 5190-10980 stalks/hm^2and6.4%-14.9% as compared to the control,while plant height and stalk diameter were found to be no significant effect by plastic film mulching. The results of benefit analysis indicated that, milky photodegradation weeding film mulching had the highest economic benefit, the second were normal colorless transparent plastic film mulching and black plastic film mulching, which were 5 987.2, 1 876.5 and 1 813.5 Yuan/hm^2 higher than the control. The gray-black film mulching treatment had poor benefit.[Conclusion] The milky photodegradation weeding plastic film could be vigorously extended in sugarcane production. Normal colorless transparent plastic film and black plastic film could be ex-tended gradually as a new kind of plastic film. The grayblack film should not be used for its higher cost and more thickness.
基金This research was supported by the Tokyo Foundation's Ryoichi Sasakawa Young Leaders Fellowship Fund(SYLFF)The Foundation for Global Scholars.the United States Environmental Protection Agency through grant number SU 835348 to M.V.Santelmann
文摘Plastic mulch is commonly used with micro-irrigation in developed countries;however,Chinese farmers use plastic mulch on a vast scale independent of micro-irrigation.For the past three decades,China’s land area in plastic mulch has exceeded the world’s total land area in micro-irrigation.We report results from the water-scarce region of Minqin County,where 87%of Chinese farmers interviewed responded that they use plastic mulch to conserve water and 53%to increase yields.Survey results indicated the desire to conserve water through the use of plastic mulch to be statistically equivalent to the desire to increase yields.Responses to interviews and surveys indicate that farmers perceive water savings of 24-26%when plastic mulch is used.Interview and survey responses suggest farming families are shifting to purchasing wheat from outside the region;a potential import of"virtual water"into this water-scarce region.
文摘Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.
基金Supported by the Special Program of Scientific and Technological Promotion of Fisheries in Guangdong(A201101I01,A201208E01)the Guangdong Scientific and Technological Planning Program(2012B020415006)~~
文摘To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.
基金financially supported by the National Natural Science Foundation of China(31270553,51279197,41401343)the Special Fund for Agricultural Profession, China(201103003)
文摘To better understand the effects of plastic film mulching on soil greenhouse gases(GHGs) emissions,we compared seasonal and vertical variations of GHG concentrations at seven soil depths in maize(Zea mays L.) fields at Changwu station in Shaanxi,a semi-humid region,between 2012 and 2013.Gas samples were taken simultaneously every one week from non-mulched(BP) and plastic film-mulched(FM) field plots.The results showed that the concentration of GHGs varied distinctly at the soil-atmosphere interface and in the soil profile during the maize growing season(MS).Both carbon dioxide(CO_2) and nitrous oxide(N_2O) concentrations increased with increasement of soil depth,while the methane(CH_4)concentrations decreased with increasement of soil depth.A strong seasonal variation pattern was found for CO_2 and N_2O concentrations,as compared to an inconspicuous seasonal variation of CH_4 concentrations.The mean CO_2 and N_2O concentrations were higher,but the mean CH_4 concentration in the soil profiles was lower in the FM plots than in the BP plots.The results of this study suggested that plastic film mulching significantly increased the potential emissions of CO_2and N_2O from the soil,and promoted CH_4 absorption by the soil,particularly during the MS.
基金supported by the Natural Science Foundation of Shandong Province,China(ZR2014YL015)the Agricultural Seed of Shandong Province,China(2016LZGC005)+1 种基金the earmarked fund for China Agriculture Research System(CARS-10-B7 and CARS-10-B8)the Youth Foundation of Shandong Academy of Agricultural Sciences,China(2014QNM31)
文摘The root quality of sweet potato cultivated during the summer season is poor in northern China;thus,this study was conducted to determine whether root quality could be improved through mulching with plastic film(MPF).The effect of MPF on root starch and its composition,the activity of starch synthesis enzymes,and other quality-related parameters were investigated in two purple flesh sweet potato cultivars,Jishu 18 and Ayamurasaki(Aya).The results indicated that root dry matter,anthocyanin content,adenosine triphosphate(ATP),and starch content were higher in both cultivars under the MPF treatment than those under the control treatment.The root adenosine diphosphate glucose pyrophosphorylase/uridine diphosphate glucose pyrophosphorylase(ADPGPPase/UDPGPPase)activity and adenosine triphosphatease(ATPase)activity were increased using MPF.However,under the MPF treatment,the amylose content,soluble sugar content,and granule-bound synthase(GBSS)activity increased in Jishu 18 but decreased in Aya,and the amylopectin content,protein content,and soluble starch synthase(SSS)activity decreased in Jishu 18 but increased in Aya.Therefore,MPF seems benifit to improve the quality of sweet potato,but the effects of this treatment condition may be dependent on the cultivar.
基金Supported by Cotton Innovation Team of Modern Agriculture Technology System of Shandong Province(SDAIT-07)Special Fund for Independent Innovation Achievement Transformation(2013ZHZX2A0402)~~
文摘In order to get a clear picture of distribution characteristics of mulching plastic film residue in cotton fields in the Yellow River Delta and make scientific pollution prevention and control strategies, an investigation was conducted in Dongying City. Five typical cotton fields were chosen, and then the number, distri- bution density and area of residual film were measured. The results showed that the residual film was 18. 84-53. 53 kg/hm^2 in cotton fields for more than 20 years, and the differences between fields were larger. The residual density was 225-340 thousand per hectare. There were great differences among residual pieces. The proportion of residual pieces over 25 cm^2 was 94. 1%, that between 100 cm^2 and 500 cm^2 was more than 50. 0%, and that bigger than 500 cm^2 was about 21. 0%. In the Yellow River Delta cotton region, large, thin and difficult to recovery were the main characteristics of mulching plastic film residue, and it had the possibility of mi- grating to deep soil. Thus, the ecological risk of mulching plastic film residue was higher. Key words The Yellow River Delta; Cotton field; Residue of mulching plastic film; Distribution characteristic
基金Supported by 973 Project(2009CB421302)Innovation Project of Chinese Academy of Sciences(KZCX2-YW-127)Youth Science Foundation of China(41401025)
文摘The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%.
基金provided by the National Natural Science Foundation of China (31701384 and 32071980)。
文摘Plastic film mulch systems are used widely in arid areas, and the associated tillage measures affect soil properties, root and crop growth, and nutrient uptake. However, much debate surrounds the most suitable tillage method for plastic film mulch systems. We conducted a two-year field experiment to explore the impact of three tillage treatments-rotary tillage before ridge–furrow plastic film mulch(MR), no-tillage before ridge–furrow plastic film mulch(MZ), and plow tillage before ridge–furrow plastic film mulch(MP)-on soil total nitrogen, available nitrogen, root stratification structure,nitrogen transfer and utilization, and maize yield. The results showed that MP had better soil quality than either MR or MZ over 2019 and 2020, with higher nitrate-nitrogen and total nitrogen in the 0–40 cm soil layer. MP improved the soil physicochemical properties more than the other treatments, producing significantly higher root numbers and root biomass for the aerial and underground nodal roots than MR and MZ. At harvest, MP had the highest root biomass density,root length density, and root surface area density in the different soil layers(0–20, 20–40, and 0–40 cm). Significant correlations occurred between root biomass and aboveground nitrogen accumulation during maize growth. During grain filling, MP had the greatest nitrogen transfer amount, significantly increasing root and aboveground nitrogen transfer by 19.63–45.82% and 11.15–24.56%, respectively, relative to the other treatments. MP significantly produced 1.36–26.73%higher grain yields and a higher grain crude protein content at harvest than MR and MZ. MP also had higher values for the nitrogen harvest index, nitrogen uptake efficiency, and partial factor productivity of nitrogen fertilizer than MR and MZ.In conclusion, plow tillage combined with a ridge–furrow plastic film mulch system facilitated maize root development and improved nitrogen utilization, thereby increasing maize yield more than the other treatments.
基金part of the projects(49890330,30230230 and 30070429)supported by the National Natural Science Foundation of China(NSFC)project(G1999011707)supported by the National Key Basic Research Support Funds,China(NKBRSF).
文摘A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.