Plastic scintillation detectors based whole body β/γ contamination monitors are developed for use in radiation facilities.This microcontroller-based multi-detector system uses 13 plastic scintillator detectors,with ...Plastic scintillation detectors based whole body β/γ contamination monitors are developed for use in radiation facilities.This microcontroller-based multi-detector system uses 13 plastic scintillator detectors,with minimized dead detection zones,monitoring the whole body,and conforming to the contamination limit prescribed by the regulatory authority.This system has the features for monitoring hands,feet,head,and faceβ/γusing contamination monitors and portal exit monitors.It can detect gamma sources at a dose rate of 10 n Gyh^(-1).The system is calibrated using b sources^(90)Sr/^(90)Y,^(204)Tl,and^(36)Cl,and the efficiency is found to be 29%,22%,and 18%,respectively.Theminimumdetectableβ/γcontaminationis0.15 Bqcm^(-2),which is significantly less than the minimum detection objectives on head,face,hands,and feet.展开更多
Background Plastic scintillator detectors are rugged and easily manufactured in desired shape,sizes and response time to gamma radiation is prompt as compared with any other scintillator detectors.Being popular these ...Background Plastic scintillator detectors are rugged and easily manufactured in desired shape,sizes and response time to gamma radiation is prompt as compared with any other scintillator detectors.Being popular these detectors are used in radiation monitors one of the application to restrict radioactive material movement.These are used in gross counting mode to know the presence of radioactivity.Therefore secondary survey is required to know the nature of the radionuclides.Purpose The feasibility study of Cylindrical Plastic Scintillator Detector(CPSD)was carried out for the qualitative and quantitative assessment of gamma emitting radionuclides.Methods In this work limited gamma spectrometry was carried out using NE110 equivalent cylindrical plastic scintillating material of 5.1 cm diameter and 100 cm long.CPSD is optically coupled to photomultiplier tube(PMT).The detector signal is processed using preamplifier,shaping amplifier and further analysed by a multi channel analyser(MCA).CPSD gamma spectrum consists of Compton continuum and Gaussian shaped Compton edge energy(λ_(e))appearing as Compton maxima energy(λ_(max)).Photon transport simulation is used to characterizeλ_(max) as a signature for radionuclides emitting gamma energy/energies.In case of unresolved gamma energies,it appears as weighted effective Compton maxima energy.The prominent gamma energies observed across nuclear industries are in the energy range 0.03–3 MeV.It is grouped as low energy,intermediate energy,high energy and ultra-high energy window.The simulated spectrum is obtained suing Gaussian broadening parameters deduced from experimentally measured spectrum.The efficiency response function is developed from simulated response of detector to standard gamma sources under known source detector configurations.Results The mono energetic gamma emitting radioisotopes are identified againstλ_(max) from data library.Qualitative analysis of spectrum is used to discriminate artificial radioactive material from naturally occurring radioactive material using gamma photon,corresponding Compton edge and expected Compton maxima in each energy window.The provisional quantitative assessment is carried out using efficiency deduced from response function.The detection efficiency varies within 1%–0.2%for 0.03 to 3 MeV gamma energies.In this study efficiency for ^(137)Cs source is 0.26%with FWHM 0.092 MeV and the results re within 15%for the measured activity.Estimated sensitivity and spectral dose rate coefficient for CPSD are 77 cps/µR/h and 44.29 nGy/kcps respectively.The MDA or MDL of the most prominent radioisotopes used in nuclear industry are estimated.CPSD showed an ability to detect 149 kBq,^(137)Cs radioisotope at 1 m distance.Conclusion CPSD can be utilised for gamma isotope identification with limited gamma spectroscopy tool in contamination and dose rate measurements monitors.展开更多
A digital pulse analysis system is an important diagnostic system in nuclear physics experimental research.In response to the demand for reflecting the particle state in a nuclear physics experiment,we have designed a...A digital pulse analysis system is an important diagnostic system in nuclear physics experimental research.In response to the demand for reflecting the particle state in a nuclear physics experiment,we have designed and developed a real-time digital pulse analysis system and applied it to the digital nuclear pulse waveform discrimination of different detectors in the HL-2M tokamak.The system is based on the peripheral component interconnect extensions for instrumentation(PXI)platform,while its software was written in LABVIEW.The key technologies involved in the system implementation include digital pulse analysis technology,digital discrimination technology,pulse height analysis technology,etc.The system has been applied to the plastic scintillator detector at the Neutron Source Lab of the University of Science and Technology of China.And the experimental results indicate that the system can discriminate between neutron(n)particles and gamma(γ)particles well when used to measure the plastic scintillator detector.展开更多
Background The plastic scintillator detector(PSD)is one of the detectors in the high energy cosmic radiation detection(HERD)facility,which is designed for gamma-ray detection and a redundant charge measurement.Backspl...Background The plastic scintillator detector(PSD)is one of the detectors in the high energy cosmic radiation detection(HERD)facility,which is designed for gamma-ray detection and a redundant charge measurement.Backsplash will lead to a decrease in PSD’s performance of gamma-ray detection and charge measurement,which should be carefully considered.Purpose Two preliminary segmentation schemes of the PSD and two veto strategies have been proposed to suppress the backsplash effect.In this paper,we focus on the influence of the backsplash caused by gamma rays.The gamma-ray trigger efficiency and identification efficiency were studied in the case of different cell sizes and veto strategies,which can provide guidance on the PSD design.Methods A Monte Carlo simulation based on Geant4 has been performed.To simplify the simulation,the PSD is segmented into 1 cm3 cubes which can be easily aggregated into cells with different sizes during analysis.Results and conclusion Side_Veto can be used as a baseline design of veto strategy,whereas Smart_Veto can be selected as an upgraded design.Both the PSD bar cell with a width of less than 11 cm and the PSD tile cell with a width of less than 20 cm can achieve a sufficiently high gamma-ray trigger efficiency(>80%),which realizes the primary goal of the PSD.Meanwhile,both the PSD bar cell with a width of less than 3 cm and the PSD tile cell with a width of less than 20 cm can ensure a sufficiently high gamma-ray identification efficiency(>80%)for photons up to 800 GeV.展开更多
文摘Plastic scintillation detectors based whole body β/γ contamination monitors are developed for use in radiation facilities.This microcontroller-based multi-detector system uses 13 plastic scintillator detectors,with minimized dead detection zones,monitoring the whole body,and conforming to the contamination limit prescribed by the regulatory authority.This system has the features for monitoring hands,feet,head,and faceβ/γusing contamination monitors and portal exit monitors.It can detect gamma sources at a dose rate of 10 n Gyh^(-1).The system is calibrated using b sources^(90)Sr/^(90)Y,^(204)Tl,and^(36)Cl,and the efficiency is found to be 29%,22%,and 18%,respectively.Theminimumdetectableβ/γcontaminationis0.15 Bqcm^(-2),which is significantly less than the minimum detection objectives on head,face,hands,and feet.
文摘Background Plastic scintillator detectors are rugged and easily manufactured in desired shape,sizes and response time to gamma radiation is prompt as compared with any other scintillator detectors.Being popular these detectors are used in radiation monitors one of the application to restrict radioactive material movement.These are used in gross counting mode to know the presence of radioactivity.Therefore secondary survey is required to know the nature of the radionuclides.Purpose The feasibility study of Cylindrical Plastic Scintillator Detector(CPSD)was carried out for the qualitative and quantitative assessment of gamma emitting radionuclides.Methods In this work limited gamma spectrometry was carried out using NE110 equivalent cylindrical plastic scintillating material of 5.1 cm diameter and 100 cm long.CPSD is optically coupled to photomultiplier tube(PMT).The detector signal is processed using preamplifier,shaping amplifier and further analysed by a multi channel analyser(MCA).CPSD gamma spectrum consists of Compton continuum and Gaussian shaped Compton edge energy(λ_(e))appearing as Compton maxima energy(λ_(max)).Photon transport simulation is used to characterizeλ_(max) as a signature for radionuclides emitting gamma energy/energies.In case of unresolved gamma energies,it appears as weighted effective Compton maxima energy.The prominent gamma energies observed across nuclear industries are in the energy range 0.03–3 MeV.It is grouped as low energy,intermediate energy,high energy and ultra-high energy window.The simulated spectrum is obtained suing Gaussian broadening parameters deduced from experimentally measured spectrum.The efficiency response function is developed from simulated response of detector to standard gamma sources under known source detector configurations.Results The mono energetic gamma emitting radioisotopes are identified againstλ_(max) from data library.Qualitative analysis of spectrum is used to discriminate artificial radioactive material from naturally occurring radioactive material using gamma photon,corresponding Compton edge and expected Compton maxima in each energy window.The provisional quantitative assessment is carried out using efficiency deduced from response function.The detection efficiency varies within 1%–0.2%for 0.03 to 3 MeV gamma energies.In this study efficiency for ^(137)Cs source is 0.26%with FWHM 0.092 MeV and the results re within 15%for the measured activity.Estimated sensitivity and spectral dose rate coefficient for CPSD are 77 cps/µR/h and 44.29 nGy/kcps respectively.The MDA or MDL of the most prominent radioisotopes used in nuclear industry are estimated.CPSD showed an ability to detect 149 kBq,^(137)Cs radioisotope at 1 m distance.Conclusion CPSD can be utilised for gamma isotope identification with limited gamma spectroscopy tool in contamination and dose rate measurements monitors.
基金supported by National Natural Science Foundation of China (No. 1157518)
文摘A digital pulse analysis system is an important diagnostic system in nuclear physics experimental research.In response to the demand for reflecting the particle state in a nuclear physics experiment,we have designed and developed a real-time digital pulse analysis system and applied it to the digital nuclear pulse waveform discrimination of different detectors in the HL-2M tokamak.The system is based on the peripheral component interconnect extensions for instrumentation(PXI)platform,while its software was written in LABVIEW.The key technologies involved in the system implementation include digital pulse analysis technology,digital discrimination technology,pulse height analysis technology,etc.The system has been applied to the plastic scintillator detector at the Neutron Source Lab of the University of Science and Technology of China.And the experimental results indicate that the system can discriminate between neutron(n)particles and gamma(γ)particles well when used to measure the plastic scintillator detector.
基金This research was supported by Youth Innovation Promotion Association,CASNational Natural Science Foundation of China,Grant No.12027803,U1731239Key Research Program of Frontier Sciences,CAS,Grant No.QYZDY-SSW-SLH008.
文摘Background The plastic scintillator detector(PSD)is one of the detectors in the high energy cosmic radiation detection(HERD)facility,which is designed for gamma-ray detection and a redundant charge measurement.Backsplash will lead to a decrease in PSD’s performance of gamma-ray detection and charge measurement,which should be carefully considered.Purpose Two preliminary segmentation schemes of the PSD and two veto strategies have been proposed to suppress the backsplash effect.In this paper,we focus on the influence of the backsplash caused by gamma rays.The gamma-ray trigger efficiency and identification efficiency were studied in the case of different cell sizes and veto strategies,which can provide guidance on the PSD design.Methods A Monte Carlo simulation based on Geant4 has been performed.To simplify the simulation,the PSD is segmented into 1 cm3 cubes which can be easily aggregated into cells with different sizes during analysis.Results and conclusion Side_Veto can be used as a baseline design of veto strategy,whereas Smart_Veto can be selected as an upgraded design.Both the PSD bar cell with a width of less than 11 cm and the PSD tile cell with a width of less than 20 cm can achieve a sufficiently high gamma-ray trigger efficiency(>80%),which realizes the primary goal of the PSD.Meanwhile,both the PSD bar cell with a width of less than 3 cm and the PSD tile cell with a width of less than 20 cm can ensure a sufficiently high gamma-ray identification efficiency(>80%)for photons up to 800 GeV.