Low-cost iron-based shape memory alloys(SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with i...Low-cost iron-based shape memory alloys(SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion(HSHPT) process on the microstructural evolution of an Fe–Mn–Si–Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ε-martensite with an HCP crystal structure and γ-phase with an FCC structure.展开更多
A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement i...A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.展开更多
Polymers with reversible plasticity shape memory effect(RPSME)have attracted considerable attention due to their simple programming and large deformation.However,the exact mechanisms of RPSME are still not thoroughly ...Polymers with reversible plasticity shape memory effect(RPSME)have attracted considerable attention due to their simple programming and large deformation.However,the exact mechanisms of RPSME are still not thoroughly understood.In this work,the RPSME of SEBS/crystallizable paraffin was investigated by comparatively analyzing the performances and microstructures of samples with different paraffin content.It was found the shape fixing ratios(Rfs)of samples increased with the paraffin content,and interestingly,a significant improvement in Rf was observed when the paraffin content exceeded 60 wt%.Tensile test results showed that the deformation characteristics of samples changed from elastic to plastic as the paraffin content increased above 60 wt%.By exploring the crystallization behaviors of paraffin in various SEBS/paraffin samples,it was revealed that the microstructures of SEBS/paraffin were different when the paraffin content was below 50 wt%and above 60 wt%.In samples with low paraffin content(below 50 wt%),nearly all paraffin was co-crystallized with ethylene-co-butylene(EB)chains and its crystallization was severely restricted;while in samples with high paraffin content(above 60 wt%),“excess”paraffin appeared and this part of paraffin crystallized on the template of the EB/paraffin co-crystals,which might be responsible for the elastic-to-plastic transition and the sharp increase in Rf.Based on the above results,a possible structural model was proposed to explain the exact mechanism of RPSME in SEBS/paraffin.展开更多
Reproducing kernel particle Method (RKPM) is a meshless technology which has proven very useful for solving problems of elastic plastic fracture mechanics. The mode I plastic zone shape at the crack-tip in a work-ha...Reproducing kernel particle Method (RKPM) is a meshless technology which has proven very useful for solving problems of elastic plastic fracture mechanics. The mode I plastic zone shape at the crack-tip in a work-hard ening material is obtained using RKPM. Ramberg-Osgood stress-strain relation is assumed and the crack-tip stress intensity factor (SIF) before and after formation of the plastic zone are examined. To impose the essential boundary conditions, penalty method is used. To construct the shape functions in the vicinity of the crack and crack-tip, both the diffraction and visibility criteria are employed. A comparison between two conventional treatments, visibility and diffraction, to crack discontinuity is conducted. The effects of different dilation parameters on SIF under plane-stress and plane-strain conditions are ~tudied. Results including plastic zone shape are compared with finite element method (FEM) to show the accuracy of RKPM. The main objective is to study the effects of different dilation parameters on SIF under plane stress and plane strain conditions and to obtain the mode I plastic zone shape at the crack-tip in a work hardening material using RKPM.展开更多
基金supported by Project PN.IIPT-PCCA-2011-3.1-0174,Contract 144/2012
文摘Low-cost iron-based shape memory alloys(SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion(HSHPT) process on the microstructural evolution of an Fe–Mn–Si–Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ε-martensite with an HCP crystal structure and γ-phase with an FCC structure.
基金supported by the Fulbright Colombia-Colciencias Scholarship and Universidad Militar Nueva Granada
文摘A shape hardening function is developed that improves the predictive capabilities of the generalized bounding surface model for cohesive soils, especially when applied to overconsolidated specimens. This improvement is realized without any changes to the simple elliptical shape of the bounding surface, and actually reduces the number of parameters associated with the model by one.
基金financially supported by the National Natural Science Foundation of China (Nos.51773040 and 52173056)。
文摘Polymers with reversible plasticity shape memory effect(RPSME)have attracted considerable attention due to their simple programming and large deformation.However,the exact mechanisms of RPSME are still not thoroughly understood.In this work,the RPSME of SEBS/crystallizable paraffin was investigated by comparatively analyzing the performances and microstructures of samples with different paraffin content.It was found the shape fixing ratios(Rfs)of samples increased with the paraffin content,and interestingly,a significant improvement in Rf was observed when the paraffin content exceeded 60 wt%.Tensile test results showed that the deformation characteristics of samples changed from elastic to plastic as the paraffin content increased above 60 wt%.By exploring the crystallization behaviors of paraffin in various SEBS/paraffin samples,it was revealed that the microstructures of SEBS/paraffin were different when the paraffin content was below 50 wt%and above 60 wt%.In samples with low paraffin content(below 50 wt%),nearly all paraffin was co-crystallized with ethylene-co-butylene(EB)chains and its crystallization was severely restricted;while in samples with high paraffin content(above 60 wt%),“excess”paraffin appeared and this part of paraffin crystallized on the template of the EB/paraffin co-crystals,which might be responsible for the elastic-to-plastic transition and the sharp increase in Rf.Based on the above results,a possible structural model was proposed to explain the exact mechanism of RPSME in SEBS/paraffin.
文摘Reproducing kernel particle Method (RKPM) is a meshless technology which has proven very useful for solving problems of elastic plastic fracture mechanics. The mode I plastic zone shape at the crack-tip in a work-hard ening material is obtained using RKPM. Ramberg-Osgood stress-strain relation is assumed and the crack-tip stress intensity factor (SIF) before and after formation of the plastic zone are examined. To impose the essential boundary conditions, penalty method is used. To construct the shape functions in the vicinity of the crack and crack-tip, both the diffraction and visibility criteria are employed. A comparison between two conventional treatments, visibility and diffraction, to crack discontinuity is conducted. The effects of different dilation parameters on SIF under plane-stress and plane-strain conditions are ~tudied. Results including plastic zone shape are compared with finite element method (FEM) to show the accuracy of RKPM. The main objective is to study the effects of different dilation parameters on SIF under plane stress and plane strain conditions and to obtain the mode I plastic zone shape at the crack-tip in a work hardening material using RKPM.