Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomograpbic images show strong seismic waves velocity contrasts in the upper mantle. The high velocity a...Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomograpbic images show strong seismic waves velocity contrasts in the upper mantle. The high velocity anomaly beneath the Alboran Sea recovered by a number of studies is now a well estab- lished feature. Several geodynamic reconstructions have been proposed also on the base of these images. We present and elaborate on restllts coming from a recent tomography study which concentrates on both the Alboran and the adjacent Atlantic region. These new results, while they confirm the existence of the fast anomaly below the Alboran region, also show interesting features of the lithosphere-asthenosphere system below the Atlantic. A high velocity body is imaged roughly below the Horseshoe Abyssal plain down to sub-lithospheric depths. This feature suggests either a possible initiation or relic subduction. Pronounced low velocity anomalies pervade the upper mantle below the Atlantic region and separate the lithospheres of the two regions. We also notice a strong change of the upper mantle velocity structure going from south to north across the Gorringe Bank. This variation in structure could be related to the different evolution in the opening of the central and northern Atlantic oceans.展开更多
Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate s...Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.展开更多
The amalgamation and breakup mechanisms of the Rodinia supercontinent during the Meso- and Neoproterozoic have been the focus of much research. However, few studies have examined the response of Neoproterozoic tectoni...The amalgamation and breakup mechanisms of the Rodinia supercontinent during the Meso- and Neoproterozoic have been the focus of much research. However, few studies have examined the response of Neoproterozoic tectonics and magmatism along the northeastern margin of the Yangtze Plate to synchronous global events. The Qianliyan Uplift is located on the eastern margin of the Sulu orogenic belt in the ocean, but the tectonic affinity of the uplift and its relationship to the Sulu orogenic belt remains unclear. In this study, we investigated the formation age, geochemical characteristics, genesis type, and affinity of the granitic gneiss on Chaolian Island of the Qianliyan uplift and its tectonic significance.展开更多
During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where ...During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.展开更多
Plate tectonics theory,established in the 1960s,has been successful in explaining many geological phenomena,processes and events that occurred in the Phanerozoic.However,the theory has often struggled to provide a coh...Plate tectonics theory,established in the 1960s,has been successful in explaining many geological phenomena,processes and events that occurred in the Phanerozoic.However,the theory has often struggled to provide a coherent framework in interpreting geological records in continental interior and Precambrian period.In dealing with the relationship between plate tectonics and continental geology,continental interior tectonics was often separated from continental margin tectonics in the inheritance and development of their structure and composition.This separation led to the illusion that the plate tectonics theory is not applicable to Precambrian geology,particularly in explaining the fundamental geological characteristics of Archean cratons.Although this illusion does not mean that the Archean continental crust did not originate from a regime of plate tectonics,it led to the development of alternative tectonic models,often involving vertical movements under a regime of stagnant lid tectonics,including not only endogenous processes such as gravitational sagduction,mantle plumes and heat pipes but also exogenous processes such as bolide impacts.These vertical processes were not unique to the Archean but persisted into the Phanerozoic.They result from mantle poloidal convection at different depths,not specific to any particular period.Upgrading the plate tectonics theory from the traditional kinematic model in the 20th century to a holistic kinematic-dynamic model in the 21st century and systematically examining the vertical transport of matter and energy at plate margins,it is evident that plate tectonics can explain the common geological characteristics of Archean cratons,such as lithological associations,structural patterns and metamorphic evolution.By deciphering the structure and composition of convergent plate margins as well as their dynamics,the formation and evolution of continental crust since the Archean can be divided into ancient plate tectonics in the Precambrian and modern plate tectonics in the Phanerozoic.In addition,there are the following three characteristic features in the Archean:(1)convective mantle temperatures were 200–300°C higher than in the Phanerozoic,(2)newly formed basaltic oceanic crust was as thick as 30–40 km,and(3)the asthenosphere had a composition similar to the primitive mantle rather than the depleted mantle at present.On this basis,the upgraded plate tectonics theory can successfully explain the major geological phenomena of Archean cratons.This approach provides a new perspective on and deep insights into the evolution of early Earth and the origin of continental crust.In detail,Archean tonalite-trondhjemite-granodiorite(TTG)rocks would result from partial melting of the over-thick basaltic oceanic crust at convergent plate margins.The structural patterns of gneissic domes and greenstone keels would result from the buoyancy-driven emplacement of TTG magmas and its interaction with the basaltic crust at convergent margins,and komatiites in greenstone belts would be the product of mantle plume activity in the regime of ancient plate tectonics.The widespread distribution of high-grade metamorphic rocks in a planar fashion,rather than in zones,is ascrible to separation of the gneissic domes from the greenstone belts.The shortage of calc-alkaline andesites in bimodal volcanic associations suggests the shortage of sediment accretionary wedges derived from weathering of granitic continental crust above oceanic subduction zones.The absence of Penrose-type ophiolites suggests that during the subduction initiation of microplates,only the upper volcanic rocks of the thick oceanic crust were offscrapped to form basalt accretionary wedges.The absence of blueschist and eclogite as well as classic paired metamorphic belts suggests that convergent plate margins were over-thickened through either warm subduction or hard collision of the thick oceanic crust at moderate geothermal gradients.Therefore,only by correctly recognizing and understanding the nature of Archean cartons can plate tectonics reasonably explain their fundamental geological characteristics.展开更多
Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terr...Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.展开更多
文摘Geophysical studies point to a complex tectonic and geodynamic evolution of the Alboran Basin and Gulf of Cadiz. Tomograpbic images show strong seismic waves velocity contrasts in the upper mantle. The high velocity anomaly beneath the Alboran Sea recovered by a number of studies is now a well estab- lished feature. Several geodynamic reconstructions have been proposed also on the base of these images. We present and elaborate on restllts coming from a recent tomography study which concentrates on both the Alboran and the adjacent Atlantic region. These new results, while they confirm the existence of the fast anomaly below the Alboran region, also show interesting features of the lithosphere-asthenosphere system below the Atlantic. A high velocity body is imaged roughly below the Horseshoe Abyssal plain down to sub-lithospheric depths. This feature suggests either a possible initiation or relic subduction. Pronounced low velocity anomalies pervade the upper mantle below the Atlantic region and separate the lithospheres of the two regions. We also notice a strong change of the upper mantle velocity structure going from south to north across the Gorringe Bank. This variation in structure could be related to the different evolution in the opening of the central and northern Atlantic oceans.
文摘Paleoproterozoic subduction strongly occurred in the western margin of Yangtze plate. The basalticandesite volcanics of Ailaoshan Group and Dibadu Formation had been formed during paleo QinghaiTibet oceanic plate subduction under the paleoYangtze plate. Their trace element geochemistry suggests that their forming environments are continentalmarginarc and back arcbasin respectively. Consequently, the Paleoproterozoic subduction system in the western margin of Yangtze plate was established. Ailaoshan Group and Dibadu Formation came from an enriched mantle source that was contaminated by crustal sediments carried by subducted slab, and formed the Paleoroterozoic metamorphic basement of western margin of Yangtze plate. Ailaoshan Group is actually western boundary of Yangtze plate.
基金funded by the National Natural Science Foundation of China(grants No.41406080,41273066 and 41106060)China Geological Survey(grant No.DD20160155)
文摘The amalgamation and breakup mechanisms of the Rodinia supercontinent during the Meso- and Neoproterozoic have been the focus of much research. However, few studies have examined the response of Neoproterozoic tectonics and magmatism along the northeastern margin of the Yangtze Plate to synchronous global events. The Qianliyan Uplift is located on the eastern margin of the Sulu orogenic belt in the ocean, but the tectonic affinity of the uplift and its relationship to the Sulu orogenic belt remains unclear. In this study, we investigated the formation age, geochemical characteristics, genesis type, and affinity of the granitic gneiss on Chaolian Island of the Qianliyan uplift and its tectonic significance.
基金supported by Basic Science Research Program through National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2018R1C 186003851)to S.-I. Park and 2015RIDlAIA09058914 and NRF2019R1A2C1002211 to S. Kwonsupported by the 2017RlA6A1A07015374(Multidisciplinary study forassessment of large earthquake potentials in the Korean Peninsula) through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT, Korea to S.K
文摘During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.
基金supported by the National Natural Science Foundation of China(Grant No.92155306).
文摘Plate tectonics theory,established in the 1960s,has been successful in explaining many geological phenomena,processes and events that occurred in the Phanerozoic.However,the theory has often struggled to provide a coherent framework in interpreting geological records in continental interior and Precambrian period.In dealing with the relationship between plate tectonics and continental geology,continental interior tectonics was often separated from continental margin tectonics in the inheritance and development of their structure and composition.This separation led to the illusion that the plate tectonics theory is not applicable to Precambrian geology,particularly in explaining the fundamental geological characteristics of Archean cratons.Although this illusion does not mean that the Archean continental crust did not originate from a regime of plate tectonics,it led to the development of alternative tectonic models,often involving vertical movements under a regime of stagnant lid tectonics,including not only endogenous processes such as gravitational sagduction,mantle plumes and heat pipes but also exogenous processes such as bolide impacts.These vertical processes were not unique to the Archean but persisted into the Phanerozoic.They result from mantle poloidal convection at different depths,not specific to any particular period.Upgrading the plate tectonics theory from the traditional kinematic model in the 20th century to a holistic kinematic-dynamic model in the 21st century and systematically examining the vertical transport of matter and energy at plate margins,it is evident that plate tectonics can explain the common geological characteristics of Archean cratons,such as lithological associations,structural patterns and metamorphic evolution.By deciphering the structure and composition of convergent plate margins as well as their dynamics,the formation and evolution of continental crust since the Archean can be divided into ancient plate tectonics in the Precambrian and modern plate tectonics in the Phanerozoic.In addition,there are the following three characteristic features in the Archean:(1)convective mantle temperatures were 200–300°C higher than in the Phanerozoic,(2)newly formed basaltic oceanic crust was as thick as 30–40 km,and(3)the asthenosphere had a composition similar to the primitive mantle rather than the depleted mantle at present.On this basis,the upgraded plate tectonics theory can successfully explain the major geological phenomena of Archean cratons.This approach provides a new perspective on and deep insights into the evolution of early Earth and the origin of continental crust.In detail,Archean tonalite-trondhjemite-granodiorite(TTG)rocks would result from partial melting of the over-thick basaltic oceanic crust at convergent plate margins.The structural patterns of gneissic domes and greenstone keels would result from the buoyancy-driven emplacement of TTG magmas and its interaction with the basaltic crust at convergent margins,and komatiites in greenstone belts would be the product of mantle plume activity in the regime of ancient plate tectonics.The widespread distribution of high-grade metamorphic rocks in a planar fashion,rather than in zones,is ascrible to separation of the gneissic domes from the greenstone belts.The shortage of calc-alkaline andesites in bimodal volcanic associations suggests the shortage of sediment accretionary wedges derived from weathering of granitic continental crust above oceanic subduction zones.The absence of Penrose-type ophiolites suggests that during the subduction initiation of microplates,only the upper volcanic rocks of the thick oceanic crust were offscrapped to form basalt accretionary wedges.The absence of blueschist and eclogite as well as classic paired metamorphic belts suggests that convergent plate margins were over-thickened through either warm subduction or hard collision of the thick oceanic crust at moderate geothermal gradients.Therefore,only by correctly recognizing and understanding the nature of Archean cartons can plate tectonics reasonably explain their fundamental geological characteristics.
文摘Prior to the collision and accretion of the Kohistan arc terrane during the late Cretaceous and the Indian plate after the early Eocene, the southern margin of Asia along the Hindu Kush, Karakoram and Lhasa block terranes was an active Andean\|type continental margin. In south Tibet this margin was dominated by the calc\|alkaline Ladakh—Gangdese granite batholith, associated andesitic volcanic rocks and continental red\|beds. In contrast, the southern Karakoram exposes deep crustal metamorphic rocks and crustal melt leucogranites. New U\|Pb age dating from the Hunza valley and Baltoro glacier region has revealed four spatially and temporally distinct metamorphic episodes. M1 sillimanite grade metamorphism in Hunza was a late Cretaceous event, probably caused by the accretion of the Kohistan arc to Asia. M2 was the major kyanite and sillimanite grade event during late Eocene—Oligocene crustal thickening and shortening, following India\|Asia collision. Numerous melting events resulted in the formation of crustal melt granites throughout the last 50Ma with multiple generations of dykes and very large scale crustal melting along the Baltoro monzogranite\|leucogranite ba tholith during the late Oligocene—early Miocene. M3 metamorphism was a high\| T , low\| p contact thermal metamorphism around the Baltoro granite. In Hunza, younger staurolite grade metamorphism has been dated by U\|Pb monazites at 16Ma, with the Sumayar leucogranite intruded at 9 5Ma cross\|cutting the metamorphic isograds. In the Baltoro region the youngest metamorphism, M4, is the sillimanite grade Dassu gneiss core complex dated by U\|Pb on monazites as late Miocene—Pliocene (5 4±0 25)Ma with Precambrian protolith zircon cores (1855±11)Ma. Numerous gem\|bearing pegmatite dykes cross\|cut these rocks and are thought to have been intruded within the last 2~3Ma. Structural mapping, combined with U\|Pb geochronology shows that major metamorphic events can be both long\|lasting (up to 20Ma) and very restrictive, both in time and space.