Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2...Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2017). In recent years, a series of Late Paleozoic-Mesozoic intrusions trending E-W have been discovered within the northern margin of the NCC, forming a magmatic belt. The study on the origin and tectonic setting of this magmatic belt not only has important significance for understanding the Late Paleozoic-Mesozoic tectonic evolution history of the northern margin of the NCC, but also can provide key constraints on the evolution of its surrounding Xing'an- Mongolia orogenic belt and the Paleo-Asian Ocean. At present, no Devonian to early stage of Early Carboniferous intrusion has been reported within the northern margin of the NCC.展开更多
基金financially supported by the China Geological Survey(grants No.DD20160048-05,12120113053400 and 12120114055501)
文摘Objective The North China Craton (NCC) is one of the oldest cratons in the world. The accretionary belt at its northern margin has been the focus of scholars both at home and abroad (Zhu Junbing and Ren Jishun, 2017). In recent years, a series of Late Paleozoic-Mesozoic intrusions trending E-W have been discovered within the northern margin of the NCC, forming a magmatic belt. The study on the origin and tectonic setting of this magmatic belt not only has important significance for understanding the Late Paleozoic-Mesozoic tectonic evolution history of the northern margin of the NCC, but also can provide key constraints on the evolution of its surrounding Xing'an- Mongolia orogenic belt and the Paleo-Asian Ocean. At present, no Devonian to early stage of Early Carboniferous intrusion has been reported within the northern margin of the NCC.