High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor(CRF) and CRF type-1 receptors(CRFR1) are members of...High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor(CRF) and CRF type-1 receptors(CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal(HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interactions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.展开更多
基金supported by the Ministry of Science and Technology of Chinathe National Basic Research Program(973)of China(2012CB518200 and 2006CB504100)National Natural Science Foundation of China(31071047,30870300,30871221 and 31171145)
文摘High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor(CRF) and CRF type-1 receptors(CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal(HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interactions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.