期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
The MORC2 p.S87L mutation reduces proliferation of pluripotent stem cells derived from a patient with the spinal muscular atrophy-like phenotype by inhibiting proliferation-related signaling pathways 被引量:1
1
作者 Sen Zeng Honglan Yang +8 位作者 Binghao Wang Yongzhi Xie Ke Xu Lei Liu Wanqian Cao Xionghao Liu Beisha Tang Mujun Liu Ruxu Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期205-211,共7页
Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal mus... Mutations in the microrchidia CW-type zinc finger protein 2(MORC2)gene are the causative agent of Charcot-Marie-Tooth disease type 2Z(CMT2Z),and the hotspot mutation p.S87L is associated with a more seve re spinal muscular atrophy-like clinical phenotype.The aims of this study were to determine the mechanism of the severe phenotype caused by the MORC2 p.S87L mutation and to explore potential treatment strategies.Epithelial cells were isolated from urine samples from a spinal muscular atrophy(SMA)-like patient[MORC2 p.S87L),a CMT2Z patient[MORC2 p.Q400R),and a healthy control and induced to generate pluripotent stem cells,which were then differentiated into motor neuron precursor cells.Next-generation RNA sequencing followed by KEGG pathway enrichment analysis revealed that differentially expressed genes involved in the PI3K/Akt and MAP K/ERK signaling pathways were enriched in the p.S87L SMA-like patient group and were significantly downregulated in induced pluripotent stem cells.Reduced proliferation was observed in the induced pluripotent stem cells and motor neuron precursor cells derived from the p.S87L SMA-like patient group compared with the CMT2Z patient group and the healthy control.G0/G1 phase cell cycle arrest was observed in induced pluripotent stem cells derived from the p.S87L SMA-like patient.MORC2 p.S87Lspecific antisense oligonucleotides(p.S87L-ASO-targeting)showed significant efficacy in improving cell prolife ration and activating the PI3K/Akt and MAP K/ERK pathways in induced pluripotent stem cells.Howeve r,p.S87L-ASO-ta rgeting did not rescue prolife ration of motor neuron precursor cells.These findings suggest that downregulation of the PI3K/Akt and MAP K/ERK signaling pathways leading to reduced cell proliferation and G0/G1 phase cell cycle arrest in induced pluripotent stem cells might be the underlying mechanism of the severe p.S87L SMA-like phenotype.p.S87L-ASO-targeting treatment can alleviate disordered cell proliferation in the early stage of pluripotent stem cell induction. 展开更多
关键词 antisense oligonucleotides cell cycle arrest Charcot-Marie-Tooth disease 2Z induced pluripotent stem cells MAPK/ERK PI3K/Akt PROLIFERATION spinal muscular atrophy-like
下载PDF
Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons
2
作者 Yalan Chen Junxin Kuang +5 位作者 Yimei Niu Hongyao Zhu Xiaoxia Chen Kwok-Fai So Anding Xu Lingling Shi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期908-914,共7页
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vi... Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases.They also represent a potential source of transplanted cells for therapeutic applications.In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development.Emerging evidence and impressive advances in human induced pluripotent stem cells,with tuned neural induction and differentiation protocols,makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible.Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol,we obtained multiple subtypes of neurons,including 20%tyrosine hydroxylase-positive dopaminergic neurons.To obtain more dopaminergic neurons,we next added sonic hedgehog(SHH)and fibroblast growth factor 8(FGF8)on day 8 of induction.This increased the proportion of dopaminergic neurons,up to 75%tyrosine hydroxylase-positive neurons,with 15%tyrosine hydroxylase and forkhead box protein A2(FOXA2)co-expressing neurons.We further optimized the induction protocol by applying the small molecule inhibitor,CHIR99021(CHIR).This helped facilitate the generation of midbrain dopaminergic neurons,and we obtained 31-74%midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining.Thus,we have established three induction protocols for dopaminergic neurons.Based on tyrosine hydroxylase and FOXA2 immunostaining analysis,the CHIR,SHH,and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons,which could be an ideal resource for tackling midbrain-related diseases. 展开更多
关键词 dopaminergic neurons FGF signal induced pluripotent stem cells MIDBRAIN neural differentiation SHH signal SMAD signal WNT signal
下载PDF
Patient-derived induced pluripotent stem cells with a MERTK mutation exhibit cell junction abnormalities and aberrant cellular differentiation potential
3
作者 Hang Zhang Ling-Zi Wu +1 位作者 Zhen-Yu Liu Zi-Bing Jin 《World Journal of Stem Cells》 SCIE 2024年第5期512-524,共13页
BACKGROUND Human induced pluripotent stem cell(hiPSC)technology is a valuable tool for generating patient-specific stem cells,facilitating disease modeling,and invest-igating disease mechanisms.However,iPSCs carrying ... BACKGROUND Human induced pluripotent stem cell(hiPSC)technology is a valuable tool for generating patient-specific stem cells,facilitating disease modeling,and invest-igating disease mechanisms.However,iPSCs carrying specific mutations may limit their clinical applications due to certain inherent characteristics.AIM To investigate the impact of MERTK mutations on hiPSCs and determine whether hiPSC-derived extracellular vesicles(EVs)influence anomalous cell junction and differentiation potential.METHODS We employed a non-integrating reprogramming technique to generate peripheral blood-derived hiPSCs with and hiPSCs without a MERTK mutation.Chromo-somal karyotype analysis,flow cytometry,and immunofluorescent staining were utilized for hiPSC identification.Transcriptomics and proteomics were employed to elucidate the expression patterns associated with cell junction abnormalities and cellular differentiation potential.Additionally,EVs were isolated from the supernatant,and their RNA and protein cargos were examined to investigate the involvement of hiPSC-derived EVs in stem cell junction and differentiation.RESULTS The generated hiPSCs,both with and without a MERTK mutation,exhibited normal karyotype and expressed pluripotency markers;however,hiPSCs with a MERTK mutation demonstrated anomalous adhesion capability and differentiation potential,as confirmed by transcriptomic and proteomic profiling.Furthermore,hiPSC-derived EVs were involved in various biological processes,including cell junction and differentiation.CONCLUSION HiPSCs with a MERTK mutation displayed altered junction characteristics and aberrant differentiation potential.Furthermore,hiPSC-derived EVs played a regulatory role in various biological processes,including cell junction and differentiation. 展开更多
关键词 Cell junction Cellular differentiation Extracellular vesicle Human induced pluripotent stem cells TRANSCRIPTOMICS Proteomics
下载PDF
Advances in the differentiation of pluripotent stem cells into vascular cells
4
作者 Yi-Chang Jiao Ying-Xin Wang +4 位作者 Wen-Zhu Liu Jing-Wen Xu Yu-Ying Zhao Chuan-Zhu Yan Fu-Chen Liu 《World Journal of Stem Cells》 SCIE 2024年第2期137-150,共14页
Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood ve... Blood vessels constitute a closed pipe system distributed throughout the body,transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys.Changes in blood vessels are related to many disorders like stroke,myocardial infarction,aneurysm,and diabetes,which are important causes of death worldwide.Translational research for new appro-aches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems.Although mice or rats have been widely used,applying data from animal studies to human-specific vascular physiology and pathology is difficult.The rise of induced pluripotent stem cells(iPSCs)provides a reliable in vitro resource for disease modeling,regenerative medicine,and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells.This review summarizes the latest progress from the establishment of iPSCs,the strategies for differentiating iPSCs into vascular cells,and the in vivo trans-plantation of these vascular derivatives.It also introduces the application of these technologies in disease modeling,drug screening,and regenerative medicine.Additionally,the application of high-tech tools,such as omics analysis and high-throughput sequencing,in this field is reviewed. 展开更多
关键词 Induced pluripotent stem cell Blood vessels Vascular organoids Endothelial cells Smooth muscle cells PERICYTES Tissue engineering vascular graft
下载PDF
Neural lineage differentiation of human pluripotent stem cells:Advances in disease modeling
5
作者 Yuan-Wei Yan Eddie S Qian +1 位作者 Lauren E Woodard Julie Bejoy 《World Journal of Stem Cells》 SCIE 2023年第6期530-545,共16页
Brain diseases affect 1 in 6 people worldwide.These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease.Recent advancements in tissue-en... Brain diseases affect 1 in 6 people worldwide.These diseases range from acute neurological conditions such as stroke to chronic neurodegenerative disorders such as Alzheimer’s disease.Recent advancements in tissue-engineered brain disease models have overcome many of the different shortcomings associated with the various animal models,tissue culture models,and epidemiologic patient data that are commonly used to study brain disease.One innovative method by which to model human neurological disease is via the directed differentiation of human pluripotent stem cells(hPSCs)to neural lineages including neurons,astrocytes,and oligodendrocytes.Three-dimensional models such as brain organoids have also been derived from hPSCs,offering more physiological relevance due to their incorporation of various cell types.As such,brain organoids can better model the pathophysiology of neural diseases observed in patients.In this review,we will emphasize recent developments in hPSC-based tissue culture models of neurological disorders and how they are being used to create neural disease models. 展开更多
关键词 Induced pluripotent stem cells ASTROCYTES OLIGODENDROCYTES MICROGLIA Brain organoids Assembloids
下载PDF
Methods to produce induced pluripotent stem cell-derived mesenchymal stem cells: Mesenchymal stem cells from induced pluripotent stem cells 被引量:3
6
作者 Victoria Dupuis Elisa Oltra 《World Journal of Stem Cells》 SCIE 2021年第8期1094-1111,共18页
Mesenchymal stem cells(MSCs)have received significant attention in recent years due to their large potential for cell therapy.Indeed,they secrete a wide variety of immunomodulatory factors of interest for the treatmen... Mesenchymal stem cells(MSCs)have received significant attention in recent years due to their large potential for cell therapy.Indeed,they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases.MSCs can be extracted from multiple tissues of the human body.However,several factors may restrict their use for clinical applications:the requirement of invasive procedures for their isolation,their limited numbers,and their heterogeneity according to the tissue of origin or donor.In addition,MSCs often present early signs of replicative senescence limiting their expansion in vitro,and their therapeutic capacity in vivo.Due to the clinical potential of MSCs,a considerable number of methods to differentiate induced pluripotent stem cells(iPSCs)into MSCs have emerged.iPSCs represent a new reliable,unlimited source to generate MSCs(MSCs derived from iPSC,iMSCs)from homogeneous and well-characterized cell lines,which would relieve many of the above mentioned technical and biological limitations.Additionally,the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells.In this review,we analyze the main current protocols used to differentiate human iPSCs into MSCs,which we classify into five different categories:MSC Switch,Embryoid Body Formation,Specific Differentiation,Pathway Inhibitor,and Platelet Lysate.We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization.Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added.The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands. 展开更多
关键词 Mesenchymal stem cells Induced pluripotent stem cells Mesenchymal stem cells derived from induced pluripotent stem cells Differentiation methods Culture components Mesenchymal stem cell markers
下载PDF
Non-human primate pluripotent stem cells for the preclinical testing of regenerative therapies
7
作者 Ignacio Rodríguez-Polo Rüdiger Behr 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第9期1867-1874,共8页
Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies.Pluripotent stem cells used as advanced therapy medical products boost the possibility to rege... Non-human primates play a key role in the preclinical validation of pluripotent stem cell-based cell replacement therapies.Pluripotent stem cells used as advanced therapy medical products boost the possibility to regenerate tissues and organs affected by degenerative diseases.Therefore,the methods to derive human induced pluripotent stem cell and embryonic stem cell lines following clinical standards have quickly developed in the last 15 years.For the preclinical validation of cell replacement therapies in non-human primates,it is necessary to generate non-human primate pluripotent stem cell with a homologous quality to their human counterparts.However,pluripotent stem cell technologies have developed at a slower pace in non-human primates in comparison with human cell systems.In recent years,however,relevant progress has also been made with non-human primate pluripotent stem cells.This review provides a systematic overview of the progress and remaining challenges for the generation of non-human primate induced pluripotent stem cells/embryonic stem cells for the preclinical testing and validation of cell replacement therapies.We focus on the critical domains of(1)reprogramming and embryonic stem cell line derivation,(2)cell line maintenance and characterization and,(3)application of non-human primate pluripotent stem cells in the context of selected preclinical studies to treat cardiovascular and neurodegenerative disorders performed in non-human primates. 展开更多
关键词 embryonic stem cells induced pluripotent stem cells non-human primates pluripotent stem cells PRECLINICAL REGENERATION REPROGRAMMING translational research
下载PDF
Generation of male germ cells from induced pluripotent stem cells (iPS cells): an in vitro and in vivo study 被引量:13
8
作者 Yong Zhu Hong-Liang Hu +10 位作者 Peng Li Shi Yang Wei Zhang Hui Ding Ru-Hui Tian Ye Ning Ling-Ling Zhang Xi-Zhi Guo Zhan-Ping Shi Zheng Li Zuping He 《Asian Journal of Andrology》 SCIE CAS CSCD 2012年第4期574-579,共6页
Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not kn... Recent studies have reported that induced pluripotent stem (iPS) cells from mice and humans can differentiate into primordial germ cells. However, whether iPS cells are capable of producing male germ cells is not known. The objective of this study was to investigate the differentiation potential of mouse iPS cells into spermatogonial stem cells and late-stage male germ cells. We used an approach that combines in vitrodifferentiation and in vivotransplantation. Embryoid bodies (EBs) were obtained from iPS cells using leukaemia inhibitor factor (LIF)-free medium. Quantitative PCR revealed a decrease in Oct4 expression and an increase in StraSand Vasa mRNA in the EBs derived from iPS cells, iPS cell-derived EBs were induced by retinoic acid to differentiate into spermatogonial stem cells (SSCs), as evidenced by their expression of VASA, as well as CDH1 and GFRal, which are markers of SSCs. Furthermore, these germ cells derived from iPS cells were transplanted into recipient testes of mice that had been pre-treated with busulfan. Notably, iPS cell-derived SSCs were able to differentiate into male germ cells ranging from spermatogonia to round spermatids, as shown by VASA and SCP3 expression. This study demonstrates that iPS cells have the potential to differentiate into late-stage male germ cells. The derivation of male germ cells from iPS cells has potential applications in the treatment of male infertility and provides a model for uncovering the molecular mechanisms underlying male germ cell development. 展开更多
关键词 DIFFERENTIATION induced pluripotent stem cells male germ cells retinoic acid TRANSPLANTATION
下载PDF
Enrichment of retinal ganglion and Müller glia progenitors from retinal organoids derived from human induced pluripotent stem cells-possibilities and current limitations 被引量:3
9
作者 Kristine Karla Freude Sarkis Saruhanian +7 位作者 Alanna McCauley Colton Paterson Madeleine Odette Annika Oostenink Poul Hyttel Mark Gillies Henriette Haukedal Miriam Kolko 《World Journal of Stem Cells》 SCIE CAS 2020年第10期1171-1183,共13页
BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in variou... BACKGROUND Retinal organoids serve as excellent human-specific disease models for conditions affecting otherwise inaccessible retinal tissue from patients.They permit the isolation of key cell types affected in various eye diseases including retinal ganglion cells(RGCs)and Müller glia.AIM To refine human-induced pluripotent stem cells(hiPSCs)differentiated into threedimensional(3D)retinal organoids to generate sufficient numbers of RGCs and Müller glia progenitors for downstream analyses.METHODS In this study we described,evaluated,and refined methods with which to generate Müller glia and RGC progenitors,isolated them via magnetic-activated cell sorting,and assessed their lineage stability after prolonged 2D culture.Putative progenitor populations were characterized via quantitative PCR and immunocytochemistry,and the ultrastructural composition of retinal organoid cells was investigated.RESULTS Our study confirms the feasibility of generating marker-characterized Müller glia and RGC progenitors within retinal organoids.Such retinal organoids can be dissociated and the Müller glia and RGC progenitor-like cells isolated via magnetic-activated cell sorting and propagated as monolayers.CONCLUSION Enrichment of Müller glia and RGC progenitors from retinal organoids is a feasible method with which to study cell type-specific disease phenotypes and to potentially generate specific retinal populations for cell replacement therapies. 展开更多
关键词 Human induced pluripotent stem cells Retinal organoids Retinal ganglion cells Müller glia Progenitors Cell-type enrichment
下载PDF
The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration 被引量:2
10
作者 Ashley DeBrot Li Yao 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1677-1684,共8页
Spinal cord injuries(SCIs) are debilitating conditions for which no effective treatment currently exists. The damage of neural tissue causes disruption of neural tracts and neuron loss in the spinal cord. Stem cell ... Spinal cord injuries(SCIs) are debilitating conditions for which no effective treatment currently exists. The damage of neural tissue causes disruption of neural tracts and neuron loss in the spinal cord. Stem cell replacement offers a solution for SCI treatment by providing a source of therapeutic cells for neural function restoration. Induced pluripotent stem cells(i PSCs) have been investigated as a potential type of stem cell for such therapies. Transplantation of i PSCs has been shown to be effective in restoring function after SCIs in animal models while they circumvent ethical and immunological concerns produced by other stem cell types. Another approach for the treatment of SCI involves the graft of a bioscaffold at the site of injury to create a microenvironment that enhances cellular viability and guides the growing axons. Studies suggest that a combination of these two treatment methods could have a synergistic effect on functional recovery post-neural injury. While much progress has been made, more research is needed before clinical trials are possible. This review highlights recent advancements using i PSCs and bioscaffolds for treatment of SCI. 展开更多
关键词 induced pluripotent stem cells bioscaffolds spinal cord injury regeneration TRANSPLANTATION differentiation functional recovery neuron replacement guidance MICROENVIRONMENT
下载PDF
Mechanism of resveratrol on the promotion of induced pluripotent stem cells 被引量:2
11
作者 Dao-fang Ding Xiao-feng Li +4 位作者 Hao Xu Zhen Wang Qian-qian Liang Chen-guang Li Yong-jun Wang 《Journal of Integrative Medicine》 SCIE CAS CSCD 2013年第6期389-396,共8页
OBJECTIVE: To investigate the effects of resveratrol (RV) in reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) and the related mechanism. METHODS: Primary MEFs were i... OBJECTIVE: To investigate the effects of resveratrol (RV) in reprogramming mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) and the related mechanism. METHODS: Primary MEFs were isolated from E13.5 embryos and used within three passages. Retroviruses expressing Sox2 and Oct4 were produced by transfecting GP2-293t cells with recombinant plasmids murine stern cell virus (MSCV)-Sox2 and MSCV-Oct4. Supernatants containing retroviruses were obtained after 48-hour transfection and MEFs were then infected. Different concentrations (0, 5, 10 and 20 IJmol/L) of RV were added to embryonic stem cell (ESC) medium to culture MEFs 48 h post-infection, iPSC clones emerged and were further cultured. Expression of pluripotent markers of iPSCs was identified by cell immunofluorescence and reverse transcription-polymerase chain reaction. Both cytotoxicity and cell proliferation were assayed by Western blot analysis after RV was added into ESC medium. The ultrastructure change of mitochondria was observed by electron microscopy. RESULTS: More than 2.9-fold and 1.3-fold increases in colony number were observed by treatment with RV at 5 and 10 pmol/L, respectively. The reprogramming efficiency was significantly decreased by treatment with 20 pmol/L RV. The proliferation effect on MEFs or MEFs infected by two factors Sox2/Oct4 (2 factors-MEFs, 2F-MEFs) was investigated after RV treatment. At 20 pmol/L RV, induced cell apoptosis and proliferation inhibition were more obvious than those of 5 and 10 IJmol/L treatments. Clones were selected from the 10 pmol/L RV-treated group and cultured. Green fluorescent protein expression from one typical clone was silenced one month later which expressed ESC-associated marker genes Gdf3, Nanog, Ecatl, Fgf4 and Foxd3. Electron transmission microscope showed obvious cavitations in mitochondria. The expression of hypoxia-inducible factor-la was up-regulated when 2F-MEFs were treated with RV compared to the control group. CONCLUSION: RV improved the efficiency of reprogramming 2F-MEFs into iPSCs at low and moderate concentrations (5 and 10 pmol/L). The effect of 10 pmol/L RV on reprogramming was much greater than that of 5 pmol/L RV. However, high concentration of RV (20 pmol/L) led to more severe cavitations in mitochondria and caused cytotoxic effects. Taken together, these findinqs suqclest that RV mimics hypoxia in cells and promotes reprogramming at a low concentration. 展开更多
关键词 RESVERATROL plant extracts pluripotent stem cells HYPOXIA mitochondria cavitation in vitro
下载PDF
Hepatitis B virus infection modeling using multi-cellular organoids derived from human induced pluripotent stem cells 被引量:2
12
作者 Di Cao Jian-Yun Ge +2 位作者 Yun Wang Tatsuya Oda Yun-Wen Zheng 《World Journal of Gastroenterology》 SCIE CAS 2021年第29期4784-4801,共18页
Chronic infection with hepatitis B virus(HBV)remains a global health concern despite the availability of vaccines.To date,the development of effective treatments has been severely hampered by the lack of reliable,repr... Chronic infection with hepatitis B virus(HBV)remains a global health concern despite the availability of vaccines.To date,the development of effective treatments has been severely hampered by the lack of reliable,reproducible,and scalable in vitro modeling systems that precisely recapitulate the virus life cycle and represent virus-host interactions.With the progressive understanding of liver organogenesis mechanisms,the development of human induced pluripotent stem cell(iPSC)-derived hepatic sources and stromal cellular compositions provides novel strategies for personalized modeling and treatment of liver disease.Further,advancements in three-dimensional culture of self-organized liver-like organoids considerably promote in vitro modeling of intact human liver tissue,in terms of both hepatic function and other physiological characteristics.Combined with our experiences in the investigation of HBV infections using liver organoids,we have summarized the advances in modeling reported thus far and discussed the limitations and ongoing challenges in the application of liver organoids,particularly those with multi-cellular components derived from human iPSCs.This review provides general guidelines for establishing clinical-grade iPSC-derived multi-cellular organoids in modeling personalized hepatitis virus infection and other liver diseases,as well as drug testing and transplantation therapy. 展开更多
关键词 Hepatitis B virus Induced pluripotent stem cells Liver organoid Multicellular organoid MODELING Transplantable
下载PDF
Heat shock protein 20 promotes sirtuin 1-dependent cell proliferation in induced pluripotent stem cells 被引量:2
13
作者 Mujib Ullah Nicole Pek Min Qian +1 位作者 Gustavo Yannarelli Asma Akbar 《World Journal of Stem Cells》 SCIE 2021年第6期659-669,共11页
BACKGROUND Heat shock proteins(HSPs)are molecular chaperones that protect cells against cellular stresses or injury.However,it has been increasingly recognized that they also play crucial roles in regulating fundament... BACKGROUND Heat shock proteins(HSPs)are molecular chaperones that protect cells against cellular stresses or injury.However,it has been increasingly recognized that they also play crucial roles in regulating fundamental cellular processes.HSP20 has been implicated in cell proliferation,but conflicting studies have shown that it can either promote or suppress proliferation.The underlying mechanisms by which HSP20 regulates cell proliferation and pluripotency remain unexplored.While the effect of HSP20 on cell proliferation has been recognized,its role in inducing pluripotency in human-induced pluripotent stem cells(iPSCs)has not been addressed.AIM To evaluate the efficacy of HSP20 overexpression in human iPSCs and evaluate the ability to promote cell proliferation.The purpose of this study was to investigate whether overexpression of HSP20 in iPSCs can increase pluripotency and regeneration.METHODS We used iPSCs,which retain their potential for cell proliferation.HSP20 overexpression effectively enhanced cell proliferation and pluripotency.Overexpression of HSP20 in iPSCs was characterized by immunocytochemistry staining and realtime polymerase chain reaction.We also used cell culture,cell counting,western blotting,and flow cytometry analyses to validate HSP20 overexpression and its mechanism.RESULTS This study demonstrated that overexpression of HSP20 can increase the pluripotency in iPSCs.Furthermore,by overexpressing HSP20 in iPSCs,we showed that HSP20 upregulated proliferation markers,induced pluripotent genes,and drove cell proliferation in a sirtuin 1(SIRT1)-dependent manner.These data have practical applications in the field of stem cell-based therapies where the mass expansion of cells is needed to generate large quantities of stem cell-derived cells for transplantation purposes.CONCLUSION We found that the overexpression of HSP20 enhanced the proliferation of iPSCs in a SIRT1-dependent manner.Herein,we established the distinct crosstalk between HSP20 and SIRT1 in regulating cell proliferation and pluripotency.Our study provides novel insights into the mechanisms controlling cell proliferation that can potentially be exploited to improve the expansion and pluripotency of human iPSCs for cell transplantation therapies.These results suggest that iPSCs overexpressing HSP20 exert regenerative and proliferative effects and may have the potential to improve clinical outcomes. 展开更多
关键词 Heat shock proteins stem cells PROLIFERATION Induced pluripotent stem cells Sirtuin-1 Heat shock protein 20 PLURIPOTENCY
下载PDF
Deriving striatal projection neurons from human pluripotent stem cells with Activin A 被引量:1
14
作者 Zoe Noakes Marija Fjodorova Meng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期1914-1916,共3页
The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primat... The striatum is the main input structure of the basal ganglia and is involved in voluntary motor control,habit learning and reward processing.Medium spiny neurons(MSNs)comprise80%and 95%of striatal neurons in primates and rodents,respectively. 展开更多
关键词 CELL MSNs PSCs Deriving striatal projection neurons from human pluripotent stem cells with Activin A stem
下载PDF
Application of mesenchymal stem cells derived from human pluripotent stem cells in regenerative medicine 被引量:1
15
作者 Tong-Ming Liu 《World Journal of Stem Cells》 SCIE 2021年第12期1826-1844,共19页
Mesenchymal stem cells(MSCs)represent the most clinically used stem cells in regenerative medicine.However,due to the disadvantages with primary MSCs,such as limited cell proliferative capacity and rarity in the tissu... Mesenchymal stem cells(MSCs)represent the most clinically used stem cells in regenerative medicine.However,due to the disadvantages with primary MSCs,such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs,gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application,and variation among donors increasing the uncertainty of MSC efficacy,the clinical application of MSCs has been greatly hampered.MSCs derived from human pluripotent stem cells(hPSC-MSCs)can circumvent these problems associated with primary MSCs.Due to the infinite selfrenewal of hPSCs and their differentiation potential towards MSCs,hPSC-MSCs are emerging as an attractive alternative for regenerative medicine.This review summarizes the progress on derivation of MSCs from human pluripotent stem cells,disease modelling and drug screening using hPSC-MSCs,and various applications of hPSC-MSCs in regenerative medicine.In the end,the challenges and concerns with hPSC-MSC applications are also discussed. 展开更多
关键词 Human pluripotent stem cells DIFFERENTIATION Mesenchymal stem cells Regenerative medicine Disease modelling Drug screening
下载PDF
Role of induced pluripotent stem cells in diagnostic cardiology 被引量:1
16
作者 Steven B Karch Vittorio Fineschi +6 位作者 Pietro Francia Matteo Scopetti Martina Padovano Federico Manetti Alessandro Santurro Paola Frati Massimo Volpe 《World Journal of Stem Cells》 SCIE 2021年第5期331-341,共11页
Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine,including cardiology.The introduction of induced pluripotent stem cells(iPSCs)has supplanted the need to use hu... Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine,including cardiology.The introduction of induced pluripotent stem cells(iPSCs)has supplanted the need to use human stem cells for most purposes,thus eliminating all ethical controversies.Since then,many new avenues have been opened in cardiology research,not only in approaches to tissue replacement but also in the design and testing of antiarrhythmic drugs.This methodology has advanced to the point where induced human cardiomyocyte cell lines can now also be obtained from commercial sources or tissue banks.Initial studies with readily available iPSCs have generally confirmed that their behavioral characteristics accurately predict the behavior of beating cardiomyocytes in vivo.As a result,iPSCs can provide new ways to study arrhythmias and heart disease in general,accelerating the development of new,more effective antiarrhythmic drugs,clinical diagnoses,and personalized medical care.The focus on producing cardiomyocytes that can be used to replace damaged heart tissue has somewhat diverted interest in a host of other applications.This manuscript is intended to provide non-specialists with a brief introduction and overview of the research carried out in the field of heart rhythm disorders. 展开更多
关键词 Human induced pluripotent stem cells Diagnostic cardiology Heart rhythm disorders Microelectrode array stem cell research Ethical principles
下载PDF
Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells 被引量:1
17
作者 Jie Zhu Mark Slevin +1 位作者 Bao-Qiang Guo Shou-Rong Zhu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第12期2004-2010,共7页
Corneal blindness caused by limbal stem cell deficiency(LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered b... Corneal blindness caused by limbal stem cell deficiency(LSCD) is one of the most common debilitating eye disorders. Thus far, the most effective treatment for LSCD is corneal transplantation, which is often hindered by the shortage of donors. Pluripotent stem cell technology including embryonic stem cells(ESCs) and induced pluripotent stem cells(iPSCs) have opened new avenues for treating this disease. iPSCs-derived corneal epithelial cells provide an autologous and unlimited source of cells for the treatment of LSCD. On the other hand, iPSCs of LSCD patients can be used for iPSCs-corneal disease model and new drug discovery. However, prior to clinical trial, the efficacy and safety of these cells in patients with LSCD should be proved. Here we focused on the current status of iPSCs-derived corneal epithelial cells used for cell therapy as well as for corneal disease modeling. The challenges and potential of iPSCs-derived corneal epithelial cells as a choice for clinical treatment in corneal disease were also discussed. 展开更多
关键词 induced pluripotent stem cells corneal epithelial cells limbal stem cell deficiency disease modeling
下载PDF
Transient Folate Deprivation in Combination with Small-molecule Compounds Facilitates the Generation of Somatic Cell-derived Pluripotent Stem Cells in Mice 被引量:1
18
作者 胡文涛 闫秋月 +2 位作者 方瑜 邱占东 张苏明 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2014年第2期151-156,共6页
Induced pluripotent stem cells (iPSCs) can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for the extra-embryonic tissues. This iPSC technology not... Induced pluripotent stem cells (iPSCs) can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for the extra-embryonic tissues. This iPSC technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large numbers of disease-specific cells for biomedical re- search. However, the low efficiency of reprogramming and genomic integration of oncogenes and viral vectors limit the potential application of iPSCs. Chemical-induced reprogramming offers a novel ap- proach to generating iPSCs. In this study, a new combination of small-molecule compounds (SMs) (so- dium butyrate, A-83-01, CHIR99021, Y-27632) under conditions of transient folate deprivation was used to generate iPSC. It was found that transient folate deprivation combined with SMs was sufficient to permit reprogramming from mouse embryonic fibroblasts (MEFs) in the presence of transcription factors, Oct4 and Klf4, within 25 days, replacing Sox2 and c-Myc, and accelerated the generation of mouse iPSCs The resulting cell lines resembled mouse embryonic stem (ES) cells with respect to proliferation rate, morphology, pluripotency-associatedmarkers and gene expressions. Deprivation of folic acid, combined with treating MEFs with SMs, can improve the inducing efficiency of iPSCs and reduce their carcino- genicity and the use of exogenous reprogramming factors. 展开更多
关键词 folic acid deprivation small-molecule compounds induced pluripotent stem cells
下载PDF
Genomic integrity of human induced pluripotent stem cells:Reprogramming, differentiation and applications 被引量:1
19
作者 Clara Steichen Zara Hannoun +2 位作者 Eléanor Luce Thierry Hauet Anne Dubart-Kupperschmitt 《World Journal of Stem Cells》 SCIE 2019年第10期729-747,共19页
Ten years after the initial generation of induced pluripotent stem cells(hiPSCs)from human tissues,their potential is no longer questioned,with over 15000 publications listed on PubMed,covering various fields of resea... Ten years after the initial generation of induced pluripotent stem cells(hiPSCs)from human tissues,their potential is no longer questioned,with over 15000 publications listed on PubMed,covering various fields of research;including disease modeling,cell therapy strategies,pharmacology/toxicology screening and 3D organoid systems.However,despite evidences that the presence of mutations in hiPSCs should be a concern,publications addressing genomic integrity of these cells represent less than 1%of the literature.After a first overview of the mutation types currently reported in hiPSCs,including karyotype abnormalities,copy number variations,single point mutation as well as uniparental disomy,this review will discuss the impact of reprogramming parameters such as starting cell type and reprogramming method on the maintenance of the cellular genomic integrity.Then,a specific focus will be placed on culture conditions and subsequent differentiation protocols and how their may also trigger genomic aberrations within the cell population of interest.Finally,in a last section,the impact of genomic alterations on the possible usages of hiPSCs and their derivatives will also be exemplified and discussed.We will also discuss which techniques or combination of techniques should be used to screen for genomic abnormalities with a particular focus on the necessary quality controls and the potential alternatives. 展开更多
关键词 Induced pluripotent stem cells Genomic integrity MUTATIONS KARYOTYPE DIFFERENTIATION Cell therapy Quality control REPROGRAMMING
下载PDF
Search for naive human pluripotent stem cells 被引量:3
20
作者 Simone Aparecida Siqueira Fonseca Roberta Montero Costas Lygia Veiga Pereira 《World Journal of Stem Cells》 2015年第3期649-656,共8页
Normal mouse pluripotent stem cells were originally derived from the inner cell mass(ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryoni... Normal mouse pluripotent stem cells were originally derived from the inner cell mass(ICM) of blastocysts and shown to be the in vitro equivalent of those pre-implantation embryonic cells, and thus were called embryonic stem cells(ESCs). More than a decade later, pluripotent cells were isolated from the ICM of human blastocysts. Despite being called human ESCs, these cells differ significantly from mouse ESCs, including different morphology and mechanisms of control of pluripotency, suggesting distinct embryonic origins of ESCs from the two species. Subsequently, mouse pluripotent stem cells were established from the ICMderived epiblast of post-implantation embryos. These mouse epiblast stem cells(Epi SCs) are morphological and epigenetically more similar to human ESCs. This raised the question of whether cells from the human ICM are in a more advanced differentiation stage than their murine counterpart, or whether the available culture conditions were not adequate to maintain those human cells in their in vivo state, leading to a transition into Epi SC-like cells in vitro. More recently, novel culture conditions allowed the conversion of human ESCs into mouse ESC-like cells called nave(or ground state) human ESCs, and the derivation of nave human ESCs from blastocysts. Here we will review the characteristics of each type of pluripotent stem cells, how(and whether) these relate to different stages of embryonic development, and discuss the potential implications of nave human ESCs in research and therapy. 展开更多
关键词 Naive pluripotent stem cells Epiblast stem cells X chromosome inactivation Human embryonic stem cells
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部