期刊文献+
共找到89,548篇文章
< 1 2 250 >
每页显示 20 50 100
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
1
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
Explainable Artificial Intelligence(XAI)Model for Cancer Image Classification
2
作者 Amit Singhal Krishna Kant Agrawal +3 位作者 Angeles Quezada Adrian Rodriguez Aguiñaga Samantha Jiménez Satya Prakash Yadav 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期401-441,共41页
The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and ... The use of Explainable Artificial Intelligence(XAI)models becomes increasingly important for making decisions in smart healthcare environments.It is to make sure that decisions are based on trustworthy algorithms and that healthcare workers understand the decisions made by these algorithms.These models can potentially enhance interpretability and explainability in decision-making processes that rely on artificial intelligence.Nevertheless,the intricate nature of the healthcare field necessitates the utilization of sophisticated models to classify cancer images.This research presents an advanced investigation of XAI models to classify cancer images.It describes the different levels of explainability and interpretability associated with XAI models and the challenges faced in deploying them in healthcare applications.In addition,this study proposes a novel framework for cancer image classification that incorporates XAI models with deep learning and advanced medical imaging techniques.The proposed model integrates several techniques,including end-to-end explainable evaluation,rule-based explanation,and useradaptive explanation.The proposed XAI reaches 97.72%accuracy,90.72%precision,93.72%recall,96.72%F1-score,9.55%FDR,9.66%FOR,and 91.18%DOR.It will discuss the potential applications of the proposed XAI models in the smart healthcare environment.It will help ensure trust and accountability in AI-based decisions,which is essential for achieving a safe and reliable smart healthcare environment. 展开更多
关键词 Explainable artificial intelligence artificial intelligence XAI healthcare CANCER image classification
下载PDF
Artificial Intelligence Prediction of One-Part Geopolymer Compressive Strength for Sustainable Concrete
3
作者 Mohamed Abdel-Mongy Mudassir Iqbal +3 位作者 M.Farag Ahmed.M.Yosri Fahad Alsharari Saif Eldeen A.S.Yousef 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期525-543,共19页
Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for pre... Alkali-activated materials/geopolymer(AAMs),due to their low carbon emission content,have been the focus of recent studies on ecological concrete.In terms of performance,fly ash and slag are preferredmaterials for precursors for developing a one-part geopolymer.However,determining the optimum content of the input parameters to obtain adequate performance is quite challenging and scarcely reported.Therefore,in this study,machine learning methods such as artificial neural networks(ANN)and gene expression programming(GEP)models were developed usingMATLAB and GeneXprotools,respectively,for the prediction of compressive strength under variable input materials and content for fly ash and slag-based one-part geopolymer.The database for this study contains 171 points extracted from literature with input parameters:fly ash concentration,slag content,calcium hydroxide content,sodium oxide dose,water binder ratio,and curing temperature.The performance of the two models was evaluated under various statistical indices,namely correlation coefficient(R),mean absolute error(MAE),and rootmean square error(RMSE).In terms of the strength prediction efficacy of a one-part geopolymer,ANN outperformed GEP.Sensitivity and parametric analysis were also performed to identify the significant contributor to strength.According to a sensitivity analysis,the activator and slag contents had the most effects on the compressive strength at 28 days.The water binder ratio was shown to be directly connected to activator percentage,slag percentage,and calcium hydroxide percentage and inversely related to compressive strength at 28 days and curing temperature. 展开更多
关键词 artificial intelligence techniques one-part geopolymer artificial neural network gene expression modelling sustainable construction polymers
下载PDF
Advancements in Barrett's esophagus detection:The role of artificial intelligence and its implications
4
作者 Sara Massironi 《World Journal of Gastroenterology》 SCIE CAS 2024年第11期1494-1496,共3页
Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utili... Artificial intelligence(AI)is making significant strides in revolutionizing the detection of Barrett's esophagus(BE),a precursor to esophageal adenocarcinoma.In the research article by Tsai et al,researchers utilized endoscopic images to train an AI model,challenging the traditional distinction between endoscopic and histological BE.This approach yielded remarkable results,with the AI system achieving an accuracy of 94.37%,sensitivity of 94.29%,and specificity of 94.44%.The study's extensive dataset enhances the AI model's practicality,offering valuable support to endoscopists by minimizing unnecessary biopsies.However,questions about the applicability to different endoscopic systems remain.The study underscores the potential of AI in BE detection while highlighting the need for further research to assess its adaptability to diverse clinical settings. 展开更多
关键词 Barrett's esophagus artificial intelligence Endoscopic images artificial intelligence model Early cancer detection ENDOSCOPY
下载PDF
Artificial intelligence in individualized retinal disease management
5
作者 Zi-Ran Zhang Jia-Jun Li Ke-Ran Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第8期1519-1530,共12页
Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effect... Owing to the rapid development of modern computer technologies,artificial intelligence(AI)has emerged as an essential instrument for intelligent analysis across a range of fields.AI has been proven to be highly effective in ophthalmology,where it is frequently used for identifying,diagnosing,and typing retinal diseases.An increasing number of researchers have begun to comprehensively map patients’retinal diseases using AI,which has made individualized clinical prediction and treatment possible.These include prognostic improvement,risk prediction,progression assessment,and interventional therapies for retinal diseases.Researchers have used a range of input data methods to increase the accuracy and dependability of the results,including the use of tabular,textual,or image-based input data.They also combined the analyses of multiple types of input data.To give ophthalmologists access to precise,individualized,and high-quality treatment strategies that will further optimize treatment outcomes,this review summarizes the latest findings in AI research related to the prediction and guidance of clinical diagnosis and treatment of retinal diseases. 展开更多
关键词 artificial intelligence artificial intelligence in ophthalmology retinal disease
下载PDF
A Discussion of Artificial Intelligence in Visual Art Education
6
作者 Joanna Black Tom Chaput 《Journal of Computer and Communications》 2024年第5期71-85,共15页
Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologi... Since ChatGPT emerged on November 30, 2022, Artificial Intelligence (AI) has been increasingly discussed as a radical force that will change our world. People have become used to AI in which such ubiquitous technologies as Siri, Google, and Netflix deploy AI algorithms to answer questions, impart information, and provide recommendations. However, many individuals including originators and backers of AI have recently expressed grave concerns. In this paper, the authors will assess what is occurring with AI in Visual Arts Education, outline positives and negatives, and provide recommendations addressed specifically for teachers working in the field regarding emerging AI usage from kindergarten to grade twelve levels as well as in higher education. 展开更多
关键词 Visual Art Education Art Education artificial Intelligence AI Generative artificial Intelligence GAI Art Teaching and Learning Art Pedagogy Art Curriculum Development Digital Art Education ART Art Education Critical Literacy
下载PDF
Artificial intelligence for characterization of diminutive colorectal polyps:A feasibility study comparing two computer-aided diagnosis systems
7
作者 Quirine Eunice Wennie van der Zander Ramon M Schreuder +9 位作者 Ayla Thijssen Carolus H J Kusters Nikoo Dehghani Thom Scheeve Bjorn Winkens Mirjam C M van der Ende-van Loon Peter H N de With Fons van der Sommen Ad A M Masclee Erik J Schoon 《Artificial Intelligence in Gastrointestinal Endoscopy》 2024年第1期11-22,共12页
BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Poly... BACKGROUND Artificial intelligence(AI)has potential in the optical diagnosis of colorectal polyps.AIM To evaluate the feasibility of the real-time use of the computer-aided diagnosis system(CADx)AI for ColoRectal Polyps(AI4CRP)for the optical diagnosis of diminutive colorectal polyps and to compare the performance with CAD EYE^(TM)(Fujifilm,Tokyo,Japan).CADx influence on the optical diagnosis of an expert endoscopist was also investigated.METHODS AI4CRP was developed in-house and CAD EYE was proprietary software provided by Fujifilm.Both CADxsystems exploit convolutional neural networks.Colorectal polyps were characterized as benign or premalignant and histopathology was used as gold standard.AI4CRP provided an objective assessment of its characterization by presenting a calibrated confidence characterization value(range 0.0-1.0).A predefined cut-off value of 0.6 was set with values<0.6 indicating benign and values≥0.6 indicating premalignant colorectal polyps.Low confidence characterizations were defined as values 40%around the cut-off value of 0.6(<0.36 and>0.76).Self-critical AI4CRP’s diagnostic performances excluded low confidence characterizations.RESULTS AI4CRP use was feasible and performed on 30 patients with 51 colorectal polyps.Self-critical AI4CRP,excluding 14 low confidence characterizations[27.5%(14/51)],had a diagnostic accuracy of 89.2%,sensitivity of 89.7%,and specificity of 87.5%,which was higher compared to AI4CRP.CAD EYE had a 83.7%diagnostic accuracy,74.2%sensitivity,and 100.0%specificity.Diagnostic performances of the endoscopist alone(before AI)increased nonsignificantly after reviewing the CADx characterizations of both AI4CRP and CAD EYE(AI-assisted endoscopist).Diagnostic performances of the AI-assisted endoscopist were higher compared to both CADx-systems,except for specificity for which CAD EYE performed best.CONCLUSION Real-time use of AI4CRP was feasible.Objective confidence values provided by a CADx is novel and self-critical AI4CRP showed higher diagnostic performances compared to AI4CRP. 展开更多
关键词 artificial intelligence Colorectal polyp characterization Computer aided diagnosis Diminutive colorectal polyps Optical diagnosis Self-critical artificial intelligence
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:2
8
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
Application of artificial hibernation technology in acute brain injury 被引量:1
9
作者 Xiaoni Wang Shulian Chen +5 位作者 Xiaoyu Wang Zhen Song Ziqi Wang Xiaofei Niu Xiaochu Chen Xuyi Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1940-1946,共7页
Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment ... Controlling intracranial pressure,nerve cell regeneration,and microenvironment regulation are the key issues in reducing mortality and disability in acute brain injury.There is currently a lack of effective treatment methods.Hibernation has the characteristics of low temperature,low metabolism,and hibernation rhythm,as well as protective effects on the nervous,cardiovascular,and motor systems.Artificial hibernation technology is a new technology that can effectively treat acute brain injury by altering the body’s metabolism,lowering the body’s core temperature,and allowing the body to enter a state similar to hibernation.This review introduces artificial hibernation technology,including mild hypothermia treatment technology,central nervous system regulation technology,and artificial hibernation-inducer technology.Upon summarizing the relevant research on artificial hibernation technology in acute brain injury,the research results show that artificial hibernation technology has neuroprotective,anti-inflammatory,and oxidative stress-resistance effects,indicating that it has therapeutic significance in acute brain injury.Furthermore,artificial hibernation technology can alleviate the damage of ischemic stroke,traumatic brain injury,cerebral hemorrhage,cerebral infarction,and other diseases,providing new strategies for treating acute brain injury.However,artificial hibernation technology is currently in its infancy and has some complications,such as electrolyte imbalance and coagulation disorders,which limit its use.Further research is needed for its clinical application. 展开更多
关键词 cute brain injury artificial hibernation HYPOTHERMIA low metabolism mild hypothermia
下载PDF
Application of artificial intelligence in the diagnosis and treatment of Kawasaki disease 被引量:1
10
作者 Yan Pan Fu-Yong Jiao 《World Journal of Clinical Cases》 SCIE 2024年第23期5304-5307,共4页
This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Cl... This editorial provides commentary on an article titled"Potential and limitationsof ChatGPT and generative artificial intelligence(AI)in medical safety education"recently published in the World Journal of Clinical Cases.AI has enormous potentialfor various applications in the field of Kawasaki disease(KD).One is machinelearning(ML)to assist in the diagnosis of KD,and clinical prediction models havebeen constructed worldwide using ML;the second is using a gene signalcalculation toolbox to identify KD,which can be used to monitor key clinicalfeatures and laboratory parameters of disease severity;and the third is using deeplearning(DL)to assist in cardiac ultrasound detection.The performance of the DLalgorithm is similar to that of experienced cardiac experts in detecting coronaryartery lesions to promoting the diagnosis of KD.To effectively utilize AI in thediagnosis and treatment process of KD,it is crucial to improve the accuracy of AIdecision-making using more medical data,while addressing issues related topatient personal information protection and AI decision-making responsibility.AIprogress is expected to provide patients with accurate and effective medicalservices that will positively impact the diagnosis and treatment of KD in thefuture. 展开更多
关键词 artificial intelligence Kawasaki disease DIAGNOSIS PREDICTION IMAGE
下载PDF
A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets 被引量:1
11
作者 Bo Wang Han Zhou +3 位作者 Shan Jing Qiang Zheng Wenjie Lan Shaowei Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期71-83,共13页
An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and ... An artificial neural network(ANN)method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets.After training,the deviation between calculate and experimental results are 3.8%and 9.3%,respectively.Through ANN model,the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed.Droplet size gradually increases with the increase of interfacial tension,and decreases with the increase of pulse intensity.It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range.For two kinds of columns,the drop size prediction deviations of ANN model are 9.6%and 18.5%and the deviations in correlations are 11%and 15%. 展开更多
关键词 artificial neural network Drop size Solvent extraction Pulsed column Two-phase flow HYDRODYNAMICS
下载PDF
The Application of Bilayer Artificial Dermis Combined with VSD Technology in Chronic Wounds 被引量:1
12
作者 Xianjin Dong Huasong Luo 《Journal of Biosciences and Medicines》 2024年第3期238-244,共7页
Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD... Background: Bilayer artificial dermis promotes wound healing and offers a treatment option for chronic wounds. Aim: Examine the clinical efficacy of bilayer artificial dermis combined with Vacuum Sealing Drainage (VSD) technology in the treatment of chronic wounds. Method: From June 2021 to December 2023, our hospital treated 24 patients with chronic skin tissue wounds on their limbs using a novel tissue engineering product, the bilayer artificial dermis, in combination with VSD technology to repair the wounds. The bilayer artificial dermis protects subcutaneous tissue, blood vessels, nerves, muscles, and tendons, and also promotes the growth of granulation tissue and blood vessels to aid in wound healing when used in conjunction with VSD technology for wound dressing changes in chronic wounds. Results: In this study, 24 cases of chronic wounds with exposed bone or tendon larger than 1.0 cm2 were treated with a bilayer artificial skin combined with VSD dressing after wound debridement. The wounds were not suitable for immediate skin grafting. At 2 - 3 weeks post-treatment, good granulation tissue growth was observed. Subsequent procedures included thick skin grafting or wound dressing changes until complete wound healing. Patients were followed up on average for 3 months (range: 1 - 12 months) post-surgery. Comparative analysis of the appearance, function, skin color, elasticity, and sensation of the healed chronic wounds revealed superior outcomes compared to traditional skin fl repairs, resulting in significantly higher satisfaction levels among patients and their families. Conclusion: The application of bilayer artificial dermis combined with VSD technology for the repair of chronic wounds proves to be a viable method, yielding satisfactory therapeutic effects compared to traditional skin flap procedures. 展开更多
关键词 Bilayer artificial Dermis Vacuum Sealing Drainage (VSD) Chronic Wounds Wound Healing APPLICATION
下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
13
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 artificial intelligence Radiomics Feature extraction Feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
下载PDF
The future of artificial hibernation medicine:protection of nerves and organs after spinal cord injury 被引量:1
14
作者 Caiyun Liu Haixin Yu +4 位作者 Zhengchao Li Shulian Chen Xiaoyin Li Xuyi Chen Bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期22-28,共7页
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi... Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine. 展开更多
关键词 artificial hibernation central thermostatic-resista nt regulation hypothermia multi-system protection neuroprotection organ protection spinal cord injury synthetic torpor
下载PDF
Exploration of Graduate Student Cultivation Mode of Landscape Architecture under the Background of“Artificial Intelligence+X” 被引量:1
15
作者 CAO Yangyang ZENG Junfeng 《Journal of Landscape Research》 2024年第1期67-69,76,共4页
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal... Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics. 展开更多
关键词 artificial intelligence+ Landscape architecture Graduate training model Professional talent
下载PDF
Magnetic Nonreciprocity in a Hybrid Device of Asymmetric Artificial Spin-Ice-Superconductors
16
作者 李冲 黄培源 +15 位作者 王晨光 李浩杰 吕阳阳 岳文诚 袁子雄 李甜雨 涂学凑 陶涛 董思宁 何亮 贾小氢 孙国柱 康琳 王华兵 吴培亨 王永磊 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期119-127,共9页
Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid d... Controlling the size and distribution of potential barriers within a medium of interacting particles can unveil unique collective behaviors and innovative functionalities.We introduce a unique superconducting hybrid device using a novel artificial spin ice structure composed of asymmetric nanomagnets.This structure forms a distinctive superconducting pinning potential that steers unconventional motion of superconducting vortices,thereby inducing a magnetic nonreciprocal effect,in contrast to the electric nonreciprocal effect commonly observed in superconducting diodes.Furthermore,the polarity of the magnetic nonreciprocity is in situ reversible through the tunable magnetic patterns of artificial spin ice.Our findings demonstrate that artificial spin ice not only precisely modulates superconducting characteristics but also opens the door to novel functionalities,offering a groundbreaking paradigm for superconducting electronics. 展开更多
关键词 artificial COLLECTIVE reciprocal
下载PDF
European Union Issues World’s First Comprehensive Regulations for Artificial Intelligence
17
作者 Chris Palmer 《Engineering》 SCIE EI CAS CSCD 2024年第7期5-7,共3页
In March 2024,European Union(EU)lawmakers passed the world’s first comprehensive set of regulations governing the use of artificial intelligence(AI)[1].The EU’s AI Act,two and a half years in the making,was initiall... In March 2024,European Union(EU)lawmakers passed the world’s first comprehensive set of regulations governing the use of artificial intelligence(AI)[1].The EU’s AI Act,two and a half years in the making,was initially drawn up as a landmark bill to reduce harm in areas in which AI was thought to pose the biggest risks to people,such as in health care,education,and security,as well as banning uses that pose“unacceptable risks,”including manipulation of human behavior and evaluation of individuals’trustworthiness based on personal characteristics.According to the regulations,which will go into effect in stages over the next two years,“high-risk”AI systems will require risk-mitigation strategies,high-quality data sets,transparency,better documentation,and human supervision.The most common current AI uses,such as augmenting recommendation engines and email spam filters,will see far less oversight. 展开更多
关键词 EMAIL artificial TRANSPARENCY
下载PDF
Single-cell pan-omics, environmental neurology, and artificial intelligence:the time for holistic brain health research
18
作者 Paolo Abondio Francesco Bruno 《Neural Regeneration Research》 SCIE CAS 2025年第6期1703-1704,共2页
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t... The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks. 展开更多
关键词 function artificial LANDSCAPE
下载PDF
A Special Issue:“Artificial Intelligence Applied in New-Type Power System”for Global Energy Interconnection
19
作者 Xueping Pan Xiangyu Kong 《Global Energy Interconnection》 EI CSCD 2024年第3期I0002-I0003,共2页
In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application ... In recent years,artificial intelligence(AI)has been widely used in the field of electricity,such as load prediction,fault diagnosis of the power equipment,intelligent scheduling of power grids.However,the application of latest AI technology still has many technical difficulties to be solved.In the process of upgrading from the traditional power system to the new-type power system,AC grids,DC grids and micro grids coexist.In addition,there are huge amount of power equipment and electronic devices,and the coupling relationship is very complicated.Moreover,the high proportion of clean energy and flexible loads connected to the grid leads to the enhancement of the stochastic characteristics of the system.And short-term and ultra-short-term forecasts are much more difficult.Therefore,the editorial office of Global Energy Interconnection has planned the special issue of“Artificial Intelligence Applied in New-Type Power System”. 展开更多
关键词 artificial POWER Type
下载PDF
Overcoming the Potential Drawbacks of Artificial Intelligence in Psychotherapy: Literature Updates
20
作者 Ogochukwu Agazie Evaristus Chino Ezema +15 位作者 Amir Meftah Bashir Aribisala Tania Sultana Uchenna Esther Ezenagu Satwant Singh Thant Zin Htet Jude Beauchamp Ndukaku Ogbonna Nnenna Bessie Emejuru Emmanuel Chiebuka Sanmi Michael Obe Chinenye Loveth Aleke Obioma Onah Ezema Chinwe Okeke-Moffatt Omotola Emmanuel Stephen Okorom 《Open Journal of Psychiatry》 2024年第S1期451-456,共6页
Artificial Intelligence (AI) has progressively impacted healthcare around the world. The increasing need for readily available mental health services, coupled with the swift advancement of novel technologies, prompts ... Artificial Intelligence (AI) has progressively impacted healthcare around the world. The increasing need for readily available mental health services, coupled with the swift advancement of novel technologies, prompts conversations over the viability of psychotherapy approaches using engagements with AI. Despite the positive impacts, there are recognizable drawbacks associated with the application of AI in psychotherapy. Establishing a therapeutic alliance is difficult for non-human entities. Psychotherapy is a task too complex for limited artificial intelligence. AI appears capable of handling jobs that are clearly defined and relatively straightforward. Besides, AI malfunctions, data confidentiality, informed consent, and risk of bias are potential concerns. We present a literature update of possible solutions to overcome these concerns. 展开更多
关键词 artificial Drawbacks INTELLIGENCE Overcoming PSYCHOTHERAPY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部