Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which ...Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which is generated by the Hopf bifurcation and the other is obtained by the Poincaré-Bendixson theorem.Yu et al.(J Math Anal Appl 436:521–555,2016,Sect.3.4)recalculated the first Liapunov coefficient of Gyllenberg and Yan’s system to be positive,rather than negative as in Gyllenberg and Yan(2009),and pointed out that the Poincaré-Bendixson theorem is not applicable for that system.Jiang et al.(J Differ Equ 284:183–218,2021,p.213)proposed an open question:“whether Zeeman’s class 30 can be rigorously proved to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem?”This paper provides four systems in Zeeman’s class 30 to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem and gives an answer to the above question.展开更多
By using the generalized PoincarE index theorem it is proved that if the n2 critical points of an n-polynomial system form a configuration of type (2n -1) - (2n - 3) +(2n- 5) -…+ (- 1 )n- 1, and the 2n -1 outmost ant...By using the generalized PoincarE index theorem it is proved that if the n2 critical points of an n-polynomial system form a configuration of type (2n -1) - (2n - 3) +(2n- 5) -…+ (- 1 )n- 1, and the 2n -1 outmost anti-saddles form the venices of a convex (2n -1)-polygon, then among these 2n-1 anti-saddles at least one must be a node.展开更多
We study the number and distribution of critical points as we Ⅱ as algebraic solutions of a cubic system close related to the general quadratic system.
基金the National Natural Science Foundation of China(NSFC)under Grant No.12171321.
文摘Gyllenberg and Yan(Discrete Contin Dyn Syst Ser B 11(2):347–352,2009)presented a system in Zeeman’s class 30 of 3-dimensional Lotka-Volterra(3D LV)competitive systems to admit at least two limit cycles,one of which is generated by the Hopf bifurcation and the other is obtained by the Poincaré-Bendixson theorem.Yu et al.(J Math Anal Appl 436:521–555,2016,Sect.3.4)recalculated the first Liapunov coefficient of Gyllenberg and Yan’s system to be positive,rather than negative as in Gyllenberg and Yan(2009),and pointed out that the Poincaré-Bendixson theorem is not applicable for that system.Jiang et al.(J Differ Equ 284:183–218,2021,p.213)proposed an open question:“whether Zeeman’s class 30 can be rigorously proved to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem?”This paper provides four systems in Zeeman’s class 30 to admit at least two limit cycles by the Hopf theorem and the Poincaré-Bendixson theorem and gives an answer to the above question.
文摘By using the generalized PoincarE index theorem it is proved that if the n2 critical points of an n-polynomial system form a configuration of type (2n -1) - (2n - 3) +(2n- 5) -…+ (- 1 )n- 1, and the 2n -1 outmost anti-saddles form the venices of a convex (2n -1)-polygon, then among these 2n-1 anti-saddles at least one must be a node.
文摘We study the number and distribution of critical points as we Ⅱ as algebraic solutions of a cubic system close related to the general quadratic system.