Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consider...Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.展开更多
In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)...In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.展开更多
[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected ...[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected as the lower limit of NLWR to replace the original water content of permanent wilting point or the water content under soil mechanical resistance of 2.0 MPa. NLWR could be calculated us-ing the minimum value of upper limit minus the maximum value of lower limit. [Re-sult] Compared with original NLWR or least limiting water range (LLWR), the modi-fied NLWR had more practical significance. When Db〉Db-thr, soil physical properties hindered the growth of crops, so the soil should be improved; when Db〉Db-thr, soil physical properties hindered the growth of crops, so-the soil should be improved; wtlen Db〈Db-thr, as long as the soil water content is within NLWR, soil physical properties had no effect on crop growth. NLWR at this time could be used as the basis for irrigation man- agement in farmland. [Conclusion] The study provides theoretical support and scientific basis for relevant researches about evolution rule and regulatory mechanisms of soil physical quality, relationship between soil physical quality and crop growth and yield, water-fertilizer-salt management of soil.展开更多
Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit wo...Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit working period.In this way the impact of disturbance torque caused by deviation of the thrust vector from the satellite COG during thruster ignition can be decreased.Therefore,the control accuracy of satellite is influenced directly by the control accuracy of TPAM.On the other hand,the on-orbit application of TPAM is restricted to the on-orbit computer resource.Therefore,the purpose of this paper is to design a control strategy for TPAM,and the strategy should not only be able to control the TPAM precisely but also be easily implemented by the on-board computer.Design/methodology/approach-First,the structure and work principle of TPAM are discussed,and the mathematical model based on D-H coordinate system is built for it.Then the fitting methods are utilized to design the control strategy of TPAM.Absolute position fitting-based control strategy and relative position fitting-based control strategy are designed,and the least squares algorithm is introduced for parameter selection.Findings-Simulations and tests are provided for the TPAM.Compared with the state-of-the-art PD controller,the proposed control strategy shows smaller overshoot and more simple realization.The experiment results are matched with the simulation results and both the experiment and simulation results show the validity of the proposed control strategies.Practical implications-The designed control strategies can be used for the TPAM of some satellite’s electric propulsion system.Originality/value-The mathematical model of the TPAM based on D-H coordinate system is given.The absolute position fitting-based control strategy and relative position fitting-based control strategy are proposed.Compared with existing methods,the two control strategies have more simple structure and smaller amount of computations.Furthermore,the relative position fitting-based control strategy achieves high precision with simple structure.展开更多
This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the co...This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.展开更多
We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has ...We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.展开更多
The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P...The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.展开更多
Investigation of the vertical vibration characteristics of the seated human body is beneficial for the design and development of vehicle ride comfort.In this study,we first established models of the seated human body ...Investigation of the vertical vibration characteristics of the seated human body is beneficial for the design and development of vehicle ride comfort.In this study,we first established models of the seated human body with two,three and four degrees of freedom(DOF).Then,the vibration characteristics of 30 volunteers were tested under standard conditions with a vibration test rig to obtain data for the apparent mass,driving point mechanical impedance,and seat-to-head transfer function.Based on the experimental data,the parameters of these models are identified and the results show that the four-DOF model can simulate the vertical vibration characteristics of the seated human body more comprehensively.Then,different seated human body models were applied to optimize the damping of shock absorber.The results show that the optimized damping with the four-DOF Chinese seated human body model is 27%more than that with rigid mass and 7%less than that with ISO 5982:2001 seated human body model.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51635002(Key Program),51605011,51275015)
文摘Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.
基金National Natural Science Foundation of China,Grant/Award Number:61972261Basic Research Foundations of Shenzhen,Grant/Award Numbers:JCYJ20210324093609026,JCYJ20200813091134001。
文摘In this paper,an Observation Points Classifier Ensemble(OPCE)algorithm is proposed to deal with High-Dimensional Imbalanced Classification(HDIC)problems based on data processed using the Multi-Dimensional Scaling(MDS)feature extraction technique.First,dimensionality of the original imbalanced data is reduced using MDS so that distances between any two different samples are preserved as well as possible.Second,a novel OPCE algorithm is applied to classify imbalanced samples by placing optimised observation points in a low-dimensional data space.Third,optimization of the observation point mappings is carried out to obtain a reliable assessment of the unknown samples.Exhaustive experiments have been conducted to evaluate the feasibility,rationality,and effectiveness of the proposed OPCE algorithm using seven benchmark HDIC data sets.Experimental results show that(1)the OPCE algorithm can be trained faster on low-dimensional imbalanced data than on high-dimensional data;(2)the OPCE algorithm can correctly identify samples as the number of optimised observation points is increased;and(3)statistical analysis reveals that OPCE yields better HDIC performances on the selected data sets in comparison with eight other HDIC algorithms.This demonstrates that OPCE is a viable algorithm to deal with HDIC problems.
基金Supported by National Natural Science Foundation of China(41161037,31371582)~~
文摘[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected as the lower limit of NLWR to replace the original water content of permanent wilting point or the water content under soil mechanical resistance of 2.0 MPa. NLWR could be calculated us-ing the minimum value of upper limit minus the maximum value of lower limit. [Re-sult] Compared with original NLWR or least limiting water range (LLWR), the modi-fied NLWR had more practical significance. When Db〉Db-thr, soil physical properties hindered the growth of crops, so the soil should be improved; when Db〉Db-thr, soil physical properties hindered the growth of crops, so-the soil should be improved; wtlen Db〈Db-thr, as long as the soil water content is within NLWR, soil physical properties had no effect on crop growth. NLWR at this time could be used as the basis for irrigation man- agement in farmland. [Conclusion] The study provides theoretical support and scientific basis for relevant researches about evolution rule and regulatory mechanisms of soil physical quality, relationship between soil physical quality and crop growth and yield, water-fertilizer-salt management of soil.
文摘Purpose-Thruster point assembly mechanism(TPAM)of the electric propulsion system allows to adjust the thrust vector,sothat the thrust vectorisdirectedtothesatellitecenterof gravity(COG)during the satellite on-orbit working period.In this way the impact of disturbance torque caused by deviation of the thrust vector from the satellite COG during thruster ignition can be decreased.Therefore,the control accuracy of satellite is influenced directly by the control accuracy of TPAM.On the other hand,the on-orbit application of TPAM is restricted to the on-orbit computer resource.Therefore,the purpose of this paper is to design a control strategy for TPAM,and the strategy should not only be able to control the TPAM precisely but also be easily implemented by the on-board computer.Design/methodology/approach-First,the structure and work principle of TPAM are discussed,and the mathematical model based on D-H coordinate system is built for it.Then the fitting methods are utilized to design the control strategy of TPAM.Absolute position fitting-based control strategy and relative position fitting-based control strategy are designed,and the least squares algorithm is introduced for parameter selection.Findings-Simulations and tests are provided for the TPAM.Compared with the state-of-the-art PD controller,the proposed control strategy shows smaller overshoot and more simple realization.The experiment results are matched with the simulation results and both the experiment and simulation results show the validity of the proposed control strategies.Practical implications-The designed control strategies can be used for the TPAM of some satellite’s electric propulsion system.Originality/value-The mathematical model of the TPAM based on D-H coordinate system is given.The absolute position fitting-based control strategy and relative position fitting-based control strategy are proposed.Compared with existing methods,the two control strategies have more simple structure and smaller amount of computations.Furthermore,the relative position fitting-based control strategy achieves high precision with simple structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51574016 and 51604018)
文摘This paper represents an attempt to extend the mechanisms of reactions and kinetics of a methane combustion reaction.Three saddle points(SPs) are identified in the reaction CH_4+ O(~3P) → OH + CH_3 using the complete active space selfconsistent field and the multireference configuration interaction methods with a proper active space. Our calculations give a fairly accurate description of the regions around the twin first-order SPs(~3A' and ~3A〞) along the direction of O(~3P) attacking a near-collinear H–CH_3. One second-order SP^(2nd)(~3E) between the above twin SPs is the result of the C_(3v) symmetry Jahn–Teller coupling within the branching space. Further kinetic calculations are performed with the canonical unified statistical theory method with the temperature ranging from 298 K to 1000 K. The rate constants are also reported. The present work reveals the reaction mechanism of hydrogen-abstraction by the O(~3P) from methane, and develops a better understanding for the role of SPs. In addition, a comparison of the reactions of O(~3P) with methane through different channels allows a molecule-level discussion of the reactivity and mechanism of the title reaction.
基金Supported by the National Natural Science Foundation of China
文摘We found another critical mass ratio value -↑μ between μ4 and μ5 concerning the genealogy of the long period family around the equilateral equilibrium point L4 in the restricted three-body problem. This value has not been pointed out before. We used numerical computations to show how the long period family evolves around this critical value. The case is similar to that of the critical values between μ2 and μ4, with slight difference in evolution details.
基金financially supported by the National Natural Science Foundation of China(No.51401050)the Fundamental Research Funding for the Central Universities(No.N160204001)supported by the Australian Research Council(ARC)Laureate Fellowship(Prof.Hodgson)
文摘The transformation behavior, microstructural evolution and mechanical properties were compared in a coldrolled Nb–Mo microalloyed 6.5Mn alloy after intercritical annealing(IA) and quenching and partitioning(Q & P),respectively. The thermodynamic calculation and theoretical analysis were used to determine the optimal heat treatment parameters. The Q & P samples exhibited relatively higher strength with relatively low ductility, mainly due to the hard martensite matrix, which resulted in continuous yielding behavior upon loading, whereas the IA samples showed the significantly improved ductility, which benefited from the more sufficient transformation-induced plasticity(TRIP) effects and the softer ultrafine ferrite matrix. The dependence of yield point elongation(YPE) of IA samples on grain size demonstrated that the YPE value was in the reverse proportional relationship to the average grain size, which agreed well with theoretical analysis.
文摘Investigation of the vertical vibration characteristics of the seated human body is beneficial for the design and development of vehicle ride comfort.In this study,we first established models of the seated human body with two,three and four degrees of freedom(DOF).Then,the vibration characteristics of 30 volunteers were tested under standard conditions with a vibration test rig to obtain data for the apparent mass,driving point mechanical impedance,and seat-to-head transfer function.Based on the experimental data,the parameters of these models are identified and the results show that the four-DOF model can simulate the vertical vibration characteristics of the seated human body more comprehensively.Then,different seated human body models were applied to optimize the damping of shock absorber.The results show that the optimized damping with the four-DOF Chinese seated human body model is 27%more than that with rigid mass and 7%less than that with ISO 5982:2001 seated human body model.