The Inspection Paradox refers to the fact that in a Renewal Process, the length of the interarrival period which contains a fixed time is stochastically larger than the length of a typical interarrival period. To prov...The Inspection Paradox refers to the fact that in a Renewal Process, the length of the interarrival period which contains a fixed time is stochastically larger than the length of a typical interarrival period. To provide a more complete understanding of this phenomenon, conditioning arguments are used to obtain the distributions and moments of the lengths of the interarrival periods other than the one containing this fixed time for the case of the time-homogeneous Poisson Process. Distributions of the waiting times for events that occur both before and after this fixed time are derived. This provides a fairly complete probabilistic analysis of the Inspection Paradox.展开更多
The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because ...The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.展开更多
We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correl...We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.展开更多
Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclus...Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.展开更多
The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling ...The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling and solving the dynamic power management (DPM) problem for embedded systems with complex behavioural characteristics. First we model a power-managed embedded computing system as a controllable Flow Chart. Then we use the Poisson process for optimisation, and give the power management algorithm by the help of Dynamic Voltage Scaling (DVS) technology. At last we built the experi- mental model using the PXA 255 Processors. The experimental results showed that the proposed technique can achieve more than 12% power saving compared to other existing DPM techniques.展开更多
New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aimin...New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.展开更多
In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend t...In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend this result to the two-parameter processes. At last, we consider the approximation of the subordinated fractional Brownian motion.展开更多
Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most ...Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.展开更多
In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting ...In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting probabilities in different weights and give an example in the case of subordination.展开更多
The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflo...The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.展开更多
Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope...Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.展开更多
In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α...In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.展开更多
Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensi...Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.展开更多
The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradatio...The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.展开更多
Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. Th...Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.展开更多
By the Cramér method, the large deviation principle for a form of compound Poisson process S(t)=∑N(t)i=1h(t-Si)Xi is obtained,where N(t), t>0, is a nonhomogeneous Poisson process with intensity λ(t)>0, Xi...By the Cramér method, the large deviation principle for a form of compound Poisson process S(t)=∑N(t)i=1h(t-Si)Xi is obtained,where N(t), t>0, is a nonhomogeneous Poisson process with intensity λ(t)>0, Xi, i≥1, are i.i.d. nonnegative random variables independent of N(t), and h(t), t>0, is a nonnegative monotone real function. Consequently, weak convergence for S(t) is also obtained.展开更多
In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alter...In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alternative are composite and carry to the intensity measure of inhomogeneous Poisson process and the intensity function is regular. For this model of shift parameter, we propose test which is asymptotically partially distribution free and consistent. We show that under null hypothesis the limit distribution of this statistic does not depend on unknown parameter.展开更多
We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional sto...We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.展开更多
The PPNH (non-homogenous Poisson processes) are frequently used as models for events that come about randomly in a given time period, for example, failure times, time of accidents occurrences, etc. In this work, PPN...The PPNH (non-homogenous Poisson processes) are frequently used as models for events that come about randomly in a given time period, for example, failure times, time of accidents occurrences, etc. In this work, PPNH is used to model monthly maximum observations of urban ozone corresponding to a period of five years from the meteorological stations of Merced, Pedregal and Plateros, located in the metropolitan area of Mexico City. The interest data are the times in which the observations surpassed the permissible level of ozone of 0.11 ppm, settled by the Mexican Official Norm (NOM-020-SSA 1-1993) to preserve public health.展开更多
This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Car...This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Carlo (MCMC) simulation methods for this model was first introduced by [1], taking into account software reliability data and considering non-informative prior distributions for the parameters of the model. With the non-informative prior distributions presented by these authors, computational difficulties may occur when using MCMC methods. This article considers different prior distributions for the parameters of the proposed model, and studies the effect of such prior distributions on the convergence and accuracy of the results. In order to illustrate the proposed methodology, two examples are considered: the first one has simulated data, and the second has a set of data for pollution issues at a region in Mexico City.展开更多
文摘The Inspection Paradox refers to the fact that in a Renewal Process, the length of the interarrival period which contains a fixed time is stochastically larger than the length of a typical interarrival period. To provide a more complete understanding of this phenomenon, conditioning arguments are used to obtain the distributions and moments of the lengths of the interarrival periods other than the one containing this fixed time for the case of the time-homogeneous Poisson Process. Distributions of the waiting times for events that occur both before and after this fixed time are derived. This provides a fairly complete probabilistic analysis of the Inspection Paradox.
文摘The delayed S-shaped software reliability growth model (SRGM) is one of the non-homogeneous Poisson process (NHPP) models which have been proposed for software reliability assessment. The model is distinctive because it has a mean value function that reflects the delay in failure reporting: there is a delay between failure detection and reporting time. The model captures error detection, isolation, and removal processes, thus is appropriate for software reliability analysis. Predictive analysis in software testing is useful in modifying, debugging, and determining when to terminate software development testing processes. However, Bayesian predictive analyses on the delayed S-shaped model have not been extensively explored. This paper uses the delayed S-shaped SRGM to address four issues in one-sample prediction associated with the software development testing process. Bayesian approach based on non-informative priors was used to derive explicit solutions for the four issues, and the developed methodologies were illustrated using real data.
文摘We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.
文摘Although Geometric Brownian Motion and Jump Diffusion Models have largely dominated the literature on asset price modeling, studies of the empirical stock price data on the Ghana Stock Exchange have led to the conclusion that there are some stocks in which the return processes consistently depart from these models in theory as well as in its statistical properties. This paper gives a fundamental review of the development of a stock price model based on pure jump processes to capture the unique behavior exhibited by some stocks on the Exchange. Although pure jump processes have been examined thoroughly by other authors, there is a lack of mathematical clarity in terms of deriving the underlying stock price process. This paper provides a link between stock prices existing on a measure space to its development as a pure jump Levy process. We test the suitability of the model to the empirical evidence using numerical procedures. The simulation results show that the trajectories of the model are a better fit for the empirical data than those produced by the diffusion and jump diffusion models.
基金Project (No. 2003AA1Z2120) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The mass of the embedded systems are driven by second batteries, not by wired power supply. So saving energy is one of the main design goals for embedded system. In this paper we present a new technique for modelling and solving the dynamic power management (DPM) problem for embedded systems with complex behavioural characteristics. First we model a power-managed embedded computing system as a controllable Flow Chart. Then we use the Poisson process for optimisation, and give the power management algorithm by the help of Dynamic Voltage Scaling (DVS) technology. At last we built the experi- mental model using the PXA 255 Processors. The experimental results showed that the proposed technique can achieve more than 12% power saving compared to other existing DPM techniques.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 51319030302 and Grant No. 9140A19030506KG0166)
文摘New armament systems are subjected to the method for dealing with multi-stage system reliability-growth statistical problems of diverse population in order to improve reliability before starting mass production. Aiming at the test process which is high expense and small sample-size in the development of complex system, the specific methods are studied on how to process the statistical information of Bayesian reliability growth regarding diverse populations. Firstly, according to the characteristics of reliability growth during product development, the Bayesian method is used to integrate the testing information of multi-stage and the order relations of distribution parameters. And then a Gamma-Beta prior distribution is proposed based on non-homogeneous Poisson process(NHPP) corresponding to the reliability growth process. The posterior distribution of reliability parameters is obtained regarding different stages of product, and the reliability parameters are evaluated based on the posterior distribution. Finally, Bayesian approach proposed in this paper for multi-stage reliability growth test is applied to the test process which is small sample-size in the astronautics filed. The results of a numerical example show that the presented model can make use of the diverse information synthetically, and pave the way for the application of the Bayesian model for multi-stage reliability growth test evaluation with small sample-size. The method is useful for evaluating multi-stage system reliability and making reliability growth plan rationally.
基金supported by National Natural Science Foundation of China (10901054)
文摘In this paper, we first prove that one-parameter standard α-stable sub-Gaussian processes can be approximated by processes constructed by integrals based on the Poisson process with random intensity. Then we extend this result to the two-parameter processes. At last, we consider the approximation of the subordinated fractional Brownian motion.
基金supported by the National Natural Science Foundation of China (71671090)the Fundamental Research Funds for the Central Universities (NP2020022)the Qinglan Project of Excellent Youth or Middle-Aged Academic Leaders in Jiangsu Province。
文摘Due to the randomness and time dependence of the factors affecting software reliability, most software reliability models are treated as stochastic processes, and the non-homogeneous Poisson process(NHPP) is the most used one.However, the failure behavior of software does not follow the NHPP in a statistically rigorous manner, and the pure random method might be not enough to describe the software failure behavior. To solve these problems, this paper proposes a new integrated approach that combines stochastic process and grey system theory to describe the failure behavior of software. A grey NHPP software reliability model is put forward in a discrete form, and a grey-based approach for estimating software reliability under the NHPP is proposed as a nonlinear multi-objective programming problem. Finally, four grey NHPP software reliability models are applied to four real datasets, the dynamic R-square and predictive relative error are calculated. Comparing with the original single NHPP software reliability model, it is found that the modeling using the integrated approach has a higher prediction accuracy of software reliability. Therefore, there is the characteristics of grey uncertain information in the NHPP software reliability models, and exploiting the latent grey uncertain information might lead to more accurate software reliability estimation.
基金supported by the National Natural Science Foundation of China(11571262,11731012 and 11971361)。
文摘In this article,we study the hitting probabilities of weighted Poisson processes and their subordinated versions with different intensities.Furthermore,we simulate and analyze the asymptotic properties of the hitting probabilities in different weights and give an example in the case of subordination.
文摘The homogenous Poisson process is often used to describe the event arrivals. Such Poisson process has been applied in various areas. This study focuses on the arrival pattern of storm water overflows. A set of overflow data was obtained from the storm water pipeline of a municipality. The aim is to verify the overflow arrival pattern and check whether the Poisson process can be applied. The adopted method is the analysis over the inter-arrival times. The exponential distribution test is conducted on the annual data set as well as the entire data set. The results show that all data sets follow the exponential distribution. With the verification of Poisson process, specific examples are also given to show how the Poisson process properties can be used in the management of storm water pipeline management. For other data that are featured with various heterogeneities, the homogenous Poisson process might not be able to be verified and used. Under such circumstances, non-homogenous survival model can be used to simulate the arrival process.
文摘Aiming at the complexity of seismic gestation mechanism and spatial distribution, we hypothesize that the seismic data are composed of background earthquakes and anomaly earthquakes in a certain temporal-spatial scope. Also the background earthquakes and anomaly earthquakes both satisfy the 2-D Poisson process of different parameters respectively. In the paper, the concept of N-th order distance is introduced in order to transform 2-D superimposed Poisson process into 1-D mixture density function. On the basis of choosing the distance, mixture density function is decomposed to recognize the anomaly earthquakes through genetic algorithm. Combined with the temporal scanning of C value, the algorithm is applied to the recognition on spatial pattern of foreshock anomalies by exam-ples of Songpan and Longling sequences in the southwest of China.
基金Project supported in part by National Basic Research Program of China (973 Project) (Grant No 2006CB705506)Hi-Tech Research and Development Program of China (863 Project) (Grant No 2007AA11Z222)National Natural Science Foundation of China (Grant Nos 60721003 and 60774034)
文摘In the study of complex networks (systems), the scaling phenomenon of flow fluctuations refers to a certain powerlaw between the mean flux (activity) (Fi) of the i-th node and its variance σi as σi α (Fi)α Such scaling laws are found to be prevalent both in natural and man-made network systems, but the understanding of their origins still remains limited. This paper proposes a non-stationary Poisson process model to give an analytical explanation of the non-universal scaling phenomenon: the exponent α varies between 1/2 and 1 depending on the size of sampling time window and the relative strength of the external/internal driven forces of the systems. The crossover behaviour and the relation of fluctuation scaling with pseudo long range dependence are also accounted for by the model. Numerical experiments show that the proposed model can recover the multi-scaiing phenomenon.
基金Supported partly by Aeronautical Science Foundation of China
文摘Let {V(t),t≤0} be the nonhomogeneous Poisson process with cumulative intensituy parameter A(t). |δ,t≥0 the, age process, and y, t≥0} the residual lifetime process. In the present-paper the expressions of n-dimensional survival distribution functions of the processes {δ and γ, and their Lebesgue decompositions are derived.
基金National Outstanding Youth Science Fund Project,China(No.71401173)
文摘The degradation process modeling is one of research hotspots of prognostic and health management(PHM),which can be used to estimate system reliability and remaining useful life(RUL).In order to study system degradation process,cumulative damage model is used for degradation modeling.Assuming that damage increment is Gamma distribution,shock counting subjects to a homogeneous Poisson process(HPP)when degradation process is linear,and shock counting is a non-homogeneous Poisson process(NHPP)when degradation process is nonlinear.A two-stage degradation system is considered in this paper,for which the degradation process is linear in the first stage and the degradation process is nonlinear in the second stage.A nonlinear modeling method for considered system is put forward,and reliability model and remaining useful life model are established.A case study is given to validate the veracities of established models.
基金National CNC Special Project,China(No.2010ZX04001-032)the Youth Science and Technology Foundation of Gansu Province,China(No.145RJYA307)
文摘Aiming at the solving problem of improved nonhomogeneous Poisson process( NHPP) model in engineering application,the immune clone maximum likelihood estimation( MLE)method for solving model parameters was proposed. The minimum negative log-likelihood function was used as the objective function to optimize instead of using iterative method to solve complex system of equations,and the problem of parameter estimation of improved NHPP model was solved by immune clone algorithm. And the interval estimation of reliability indices was given by using fisher information matrix method and delta method. An example of failure truncated data from multiple numerical control( NC) machine tools was taken to prove the method. and the results show that the algorithm has a higher convergence rate and computational accuracy, which demonstrates the feasibility of the method.
基金National Natural Science Foundation of China(No. 10971157)Educational Commission of Hubei Province, China(No.2004X124)
文摘By the Cramér method, the large deviation principle for a form of compound Poisson process S(t)=∑N(t)i=1h(t-Si)Xi is obtained,where N(t), t>0, is a nonhomogeneous Poisson process with intensity λ(t)>0, Xi, i≥1, are i.i.d. nonnegative random variables independent of N(t), and h(t), t>0, is a nonnegative monotone real function. Consequently, weak convergence for S(t) is also obtained.
文摘In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for the inhomogeneous Poisson process with the unknown translation parameter as multidimensional parameter. The basic hypothesis and the alternative are composite and carry to the intensity measure of inhomogeneous Poisson process and the intensity function is regular. For this model of shift parameter, we propose test which is asymptotically partially distribution free and consistent. We show that under null hypothesis the limit distribution of this statistic does not depend on unknown parameter.
文摘We give an extension result of Watanabe’s characterization for 2-dimensional Poisson processes. By using this result, the equivalence of uniqueness in law and joint uniqueness in law is proved for one-dimensional stochastic differential equations driven by Poisson processes. After that, we give a simplified Engelbert theorem for the stochastic differential equations of this type.
文摘The PPNH (non-homogenous Poisson processes) are frequently used as models for events that come about randomly in a given time period, for example, failure times, time of accidents occurrences, etc. In this work, PPNH is used to model monthly maximum observations of urban ozone corresponding to a period of five years from the meteorological stations of Merced, Pedregal and Plateros, located in the metropolitan area of Mexico City. The interest data are the times in which the observations surpassed the permissible level of ozone of 0.11 ppm, settled by the Mexican Official Norm (NOM-020-SSA 1-1993) to preserve public health.
基金partially supported by grants from Capes,CNPq and FAPESP.
文摘This article discusses the Bayesian approach for count data using non-homogeneous Poisson processes, considering different prior distributions for the model parameters. A Bayesian approach using Markov Chain Monte Carlo (MCMC) simulation methods for this model was first introduced by [1], taking into account software reliability data and considering non-informative prior distributions for the parameters of the model. With the non-informative prior distributions presented by these authors, computational difficulties may occur when using MCMC methods. This article considers different prior distributions for the parameters of the proposed model, and studies the effect of such prior distributions on the convergence and accuracy of the results. In order to illustrate the proposed methodology, two examples are considered: the first one has simulated data, and the second has a set of data for pollution issues at a region in Mexico City.