期刊文献+
共找到4,539篇文章
< 1 2 227 >
每页显示 20 50 100
Polarities effect on arc interference in triple-electrode CO2 fillet welding 被引量:3
1
作者 马晓丽 华学明 吴毅雄 《China Welding》 EI CAS 2012年第4期15-19,共5页
The occurrence of arc interference between the adjacent arcs becomes an important problem in triple-electrode high speed CO2 fillet welding. To clarify this problem, polarities effects on arc interference were investi... The occurrence of arc interference between the adjacent arcs becomes an important problem in triple-electrode high speed CO2 fillet welding. To clarify this problem, polarities effects on arc interference were investigated. The experimental results and theoretical analysis showed that the reverse magnetic field generated by the middle wire ( DCEN or DCEP ) decreased the arc deflection due to arc interference. The average arc voltage fluctuations induced by DCEP/DECN/DCEP and DCEN/DCEP/DCEN were smaller than those induced by the other polarities. 展开更多
关键词 triple-electrode CO2 fillet welding arc interference polarities
下载PDF
Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities 被引量:2
2
作者 Tongkai Zhang Yu Zhang +2 位作者 Qizheng Ji Ben Li Jiting Ouyang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期324-332,共9页
During a dc corona discharge, the ions’ momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated ex... During a dc corona discharge, the ions’ momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration.The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode.Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage.The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition.The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model.The ionic wind of negative corona is mainly affected by negative ions.The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area.The ionic wind of positive corona is mainly affected by positive ions.The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area. 展开更多
关键词 CORONA DISCHARGE IONIC wind ELECTRODE polarity
下载PDF
Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities 被引量:1
3
作者 Song JIANG Lifei HUANG +3 位作者 Zhonghang WU Yonggang WANG Zi LI Junfeng RAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第12期95-104,共10页
Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge(DBD),such as air purification,water treatment and material surface modification.This article focuses on the electrical and ... Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge(DBD),such as air purification,water treatment and material surface modification.This article focuses on the electrical and optical effects of the DBD under three square wave pulses polarities-positive,negative and bipolar.The result shows that under the same voltage with the quartz glass medium,the discharge efficiency of bipolar polarity pulse is the highest due to the influence of deposited charge.With the increase of air gap distance from 0.5 to 1.5 mm,average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina,and increase,and then decrease under quartz glass and polymethyl methacrylate(PMMA).Through spectrum diagnosis,in the quartz glass medium,the vibration temperature is the highest under negative polarity pulse excitation.Under bipolar pulse,the vibration temperature does not change significantly with the change of air gap distance.For the three dielectric materials of quartz glass,alumina and PMMA,the molecular vibration temperature is the highest under the quartz glass medium with the same voltage.When the gap spacing,pulse polarity or dielectric material are changed,the rotational temperature does not change significantly. 展开更多
关键词 dielectric barrier discharge pulse polarity energy efficiency molecular vibrational temperature rotational temperature
下载PDF
GaN layers with different polarities prepared by radio frequency molecular beam epitaxy and characterized by Raman scattering
4
作者 钟飞 李新化 +6 位作者 邱凯 尹志军 姬长建 曹先存 韩奇峰 陈家荣 王玉琦 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第9期2786-2790,共5页
GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling A1/N flux ratio during h... GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling A1/N flux ratio during high temperature A1N buffer growth. The Raman results illustrate that the N-polarity GaN films have frequency shifts at A1 (LO) mode because of their high carrier density; the forbidden A1 (TO) mode occurs for mixed-polarity GaN films due to the destroyed translation symmetry by inversion domain boundaries (IDBS); Raman spectra for Ga-polarity GaN films show that they have neither frequency shifts mode nor forbidden mode. These results indicate that Ga-polarity GaN films have a better quality, and they are in good agreement with the results obtained from the room temperature Hall mobility. The best values of Ga-polarity GaN films are 1042 cm^2/Vs with a carrier density of 1.0× 1017 cm^-3. 展开更多
关键词 polarity gallium nitride Raman scattering
下载PDF
An Opinion Mining Task in Turkish Language: A Model for Assigning Opinions in Turkish Blogs to the Polarities
5
作者 Cigdem Aytekin 《Journalism and Mass Communication》 2013年第3期179-198,共20页
Global changes took place at a neck-breaking speed in lots of fields along with the Web 2.0 era, which can be stated as the new Internet trend. Web pages which once were a statical structure that can be said to become... Global changes took place at a neck-breaking speed in lots of fields along with the Web 2.0 era, which can be stated as the new Internet trend. Web pages which once were a statical structure that can be said to become dynamic pages created by users, and in this regard they can be said to have been democratized by evolving. Social media, which were structured alongside with this era, by providing a large data flow for businesses, present new and improvable opportunities in the field of creating effective strategies. There are lots of blogs in today's Internet environment which includes customer ideas regarding the products/services that they possess. This environment, which in a way globalizes the customer ideas, is a new medium suitable for examination in terms of its increasing the business-customer interaction and due to its transporter nature; it provides the text data that may be analyzed in the field of Customer Relationship Management to businesses. Thus, businesses should follow blog environments to see how the product/service they provide is greeted in terms of the customer focus and it should be seen as an important job on which they can conduct effective analyses. For this purpose, a model proposal that will assign the ideas to the Turkish blogs was given in the study. Opinion mining methods were used in the model, and so to perceive a general look-on about products/services, a methodology was devised, which will assign the text based opinion data on the Turkish blogs to the poles. Success of the pole assignment of the model is evaluated with the precision measure. 展开更多
关键词 opinion mining text classification sentiment classification semantic orientation positive/negative polarity
下载PDF
Cell polarization in ischemic stroke: molecular mechanisms and advances
6
作者 Yuanwei Li Xiaoxiao Xu +5 位作者 Xuan Wu Jiarui Li Shiling Chen Danyang Chen Gaigai Li Zhouping Tang 《Neural Regeneration Research》 SCIE CAS 2025年第3期632-645,共14页
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modu... Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as ‘cell polarization.’ There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations(microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke. 展开更多
关键词 astrocyte polarization immune regulation inflammation ischemic injury microglia polarization neutrophil polarization signaling pathways STROKE
下载PDF
Defects‑Rich Heterostructures Trigger Strong Polarization Coupling in Sulfides/Carbon Composites with Robust Electromagnetic Wave Absorption
7
作者 Jiaolong Liu Siyu Zhang +14 位作者 Dan Qu Xuejiao Zhou Moxuan Yin Chenxuan Wang Xuelin Zhang Sichen Li Peijun Zhang Yuqi Zhou Kai Tao Mengyang Li Bing Wei Hongjing Wu Mengyang Li Bing Wei Hongjing Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期528-547,共20页
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how... Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response. 展开更多
关键词 Defects-rich heterointerfaces Sulfides Polarization coupling Electromagnetic wave absorption
下载PDF
Low‑Temperature Oxidation Induced Phase Evolution with Gradient Magnetic Heterointerfaces for Superior Electromagnetic Wave Absorption
8
作者 Zizhuang He Lingzi Shi +6 位作者 Ran Sun Lianfei Ding Mukun He Jiaming Li Hua Guo Tiande Gao Panbo Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期191-204,共14页
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan... Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption. 展开更多
关键词 Magnetic heterointerfaces Phase evolution Interfacial polarization Magnetic coupling Electromagnetic wave absorption
下载PDF
High-dose dexamethasone regulates microglial polarization via the GR/JAK1/STAT3 signaling pathway after traumatic brain injury
9
作者 Mengshi Yang Miao Bai +10 位作者 Yuan Zhuang Shenghua Lu Qianqian Ge Hao Li Yu Deng Hongbin Wu Xiaojian Xu Fei Niu Xinlong Dong Bin Zhang Baiyun Liu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2611-2623,共13页
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i... Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway. 展开更多
关键词 apoptosis BV2 microglia DEXAMETHASONE glucocorticoid receptor GLUCOCORTICOIDS innate immune system microglial polarization neuroinflammation primary microglia traumatic brain injury
下载PDF
Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury
10
作者 Jiewen Chen Xiaolin Zeng +6 位作者 Le Wang Wenwu Zhang Gang Li Xing Cheng Peiqiang Su Yong Wan Xiang Li 《Neural Regeneration Research》 SCIE CAS 2025年第2期557-573,共17页
Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-e... Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury.Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction.However,the mechanisms involved remain unclear.In this study,we found that after spinal cord injury,resting microglia(M0)were polarized into pro-inflammatory phenotypes(MG1 and MG3),while resting astrocytes were polarized into reactive and scar-forming phenotypes.The expression of growth arrest-specific 6(Gas6)and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury.In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia,and even inhibited the cross-regulation between them.We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway.This,in turn,inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways.In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord,thereby promoting tissue repair and motor function recovery.Overall,Gas6 may play a role in the treatment of spinal cord injury.It can inhibit the inflammatory pathway of microglia and polarization of astrocytes,attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment,and thereby alleviate local inflammation and reduce scar formation in the spinal cord. 展开更多
关键词 ASTROCYTES AXL cell polarization GAS6 Hippo signal inflammatory micro-environment intercellular interaction MICROGLIA single-cell sequencing spinal cord injury
下载PDF
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke
11
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome POLARIZATION
下载PDF
Designing Electronic Structures of Multiscale Helical Converters for Tailored Ultrabroad Electromagnetic Absorption
12
作者 Zhaobo Feng Chongbo Liu +7 位作者 Xin Li Guangsheng Luo Naixin Zhai Ruizhe Hu Jing Lin Jinbin Peng Yuhui Peng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期439-455,共17页
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw... Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications. 展开更多
关键词 Metal-nonmetal co-doping 3d-2p orbital coupling Spin polarization Helical structure Broadband EM wave absorption
下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
13
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
下载PDF
Inhibiting SHP2 reduces glycolysis, promotes microglial M1 polarization, and alleviates secondary inflammation following spinal cord injury in a mouse model
14
作者 Xintian Ding Chun Chen +6 位作者 Heng Zhao Bin Dai Lei Ye Tao Song Shuai Huang Jia Wang Tao You 《Neural Regeneration Research》 SCIE CAS 2025年第3期858-872,共15页
Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PT... Reducing the secondary inflammatory response, which is partly mediated by microglia, is a key focus in the treatment of spinal cord injury. Src homology 2-containing protein tyrosine phosphatase 2(SHP2), encoded by PTPN11, is widely expressed in the human body and plays a role in inflammation through various mechanisms. Therefore, SHP2 is considered a potential target for the treatment of inflammation-related diseases. However, its role in secondary inflammation after spinal cord injury remains unclear. In this study, SHP2 was found to be abundantly expressed in microglia at the site of spinal cord injury. Inhibition of SHP2 expression using siRNA and SHP2 inhibitors attenuated the microglial inflammatory response in an in vitro lipopolysaccharide-induced model of inflammation. Notably, after treatment with SHP2 inhibitors, mice with spinal cord injury exhibited significantly improved hind limb locomotor function and reduced residual urine volume in the bladder. Subsequent in vitro experiments showed that, in microglia stimulated with lipopolysaccharide, inhibiting SHP2 expression promoted M2 polarization and inhibited M1 polarization. Finally, a co-culture experiment was conducted to assess the effect of microglia treated with SHP2 inhibitors on neuronal cells. The results demonstrated that inflammatory factors produced by microglia promoted neuronal apoptosis, while inhibiting SHP2 expression mitigated these effects. Collectively, our findings suggest that SHP2 enhances secondary inflammation and neuronal damage subsequent to spinal cord injury by modulating microglial phenotype. Therefore, inhibiting SHP2 alleviates the inflammatory response in mice with spinal cord injury and promotes functional recovery postinjury. 展开更多
关键词 apoptosis GLYCOLYSIS inflammatory response MICROGLIA neurons POLARIZATION spinal cord injury Src homology 2-containing protein tyrosine phosphatase 2
下载PDF
一种基于Polar译码度量选择的第三方高效PDCCH盲检方法
15
作者 王霄峻 马晓静 黄钰华 《Journal of Southeast University(English Edition)》 EI CAS 2024年第1期97-104,共8页
为研究和设计面向第三方场景的高效盲检方法,提出了一种基于Polar译码度量选择的第三方高效PDCCH盲检方法,其技术路线包括Polar译码算法与物理的下行控制信道(PDCCH)盲检算法2个板块.基于Polar译码盲检算法,引入一种基于下行控制信息(D... 为研究和设计面向第三方场景的高效盲检方法,提出了一种基于Polar译码度量选择的第三方高效PDCCH盲检方法,其技术路线包括Polar译码算法与物理的下行控制信道(PDCCH)盲检算法2个板块.基于Polar译码盲检算法,引入一种基于下行控制信息(DCI)长度的Polar译码度量,提出了改进的基于Polar译码度量选择的第三方盲检方法.基于PDCCH盲检算法,引入一种重排序盲检算法.将改进的Polar译码算法与重排序盲检算法有机结合,提出面向第三方场景的高效PDCCH盲检方法.基于MATLAB平台搭建5G PDCCH盲检仿真链路,对所提方法进行验证与分析.结果表明,该方法能够同时有效减小PDCCH盲检次数与DCI候选长度数量,在保证目标捕获准确率的前提下提高盲检效率. 展开更多
关键词 Polar译码 物理的下行控制信道 盲检 下行控制信息
下载PDF
Calculus bovis inhibits M2 tumor-associated macrophage polarization via Wnt/β-catenin pathway modulation to suppress liver cancer 被引量:11
16
作者 Zhen Huang Fan-Ying Meng +12 位作者 Lin-Zhu Lu Qian-Qian Guo Chang-Jun Lv Nian-Hua Tan Zhe Deng Jun-Yi Chen Zi-Shu Zhang Bo Zou Hong-Ping Long Qing Zhou Sha Tian Si Mei Xue-Fei Tian 《World Journal of Gastroenterology》 SCIE CAS 2024年第29期3511-3533,共23页
BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which... BACKGROUND Calculus bovis(CB),used in traditional Chinese medicine,exhibits anti-tumor effects in various cancer models.It also constitutes an integral component of a compound formulation known as Pien Tze Huang,which is indicated for the treatment of liver cancer.However,its impact on the liver cancer tumor microenvironment,particularly on tumor-associated macrophages(TAMs),is not well understood.AIM To elucidate the anti-liver cancer effect of CB by inhibiting M2-TAM polarization via Wnt/β-catenin pathway modulation.METHODS This study identified the active components of CB using UPLC-Q-TOF-MS,evaluated its anti-neoplastic effects in a nude mouse model,and elucidated the underlying mechanisms via network pharmacology,transcriptomics,and molecular docking.In vitro assays were used to investigate the effects of CB-containing serum on HepG2 cells and M2-TAMs,and Wnt pathway modulation was validated by real-time reverse transcriptase-polymerase chain reaction and Western blot analysis.RESULTS This study identified 22 active components in CB,11 of which were detected in the bloodstream.Preclinical investigations have demonstrated the ability of CB to effectively inhibit liver tumor growth.An integrated approach employing network pharmacology,transcriptomics,and molecular docking implicated the Wnt signaling pathway as a target of the antineoplastic activity of CB by suppressing M2-TAM polarization.In vitro and in vivo experiments further confirmed that CB significantly hinders M2-TAM polarization and suppresses Wnt/β-catenin pathway activation.The inhibitory effect of CB on M2-TAMs was reversed when treated with the Wnt agonist SKL2001,confirming its pathway specificity.CONCLUSION This study demonstrated that CB mediates inhibition of M2-TAM polarization through the Wnt/β-catenin pathway,contributing to the suppression of liver cancer growth. 展开更多
关键词 Calculus bovis M2 tumor-associated macrophage polarization Liver cancer Wnt/β-catenin pathway Tumor microenvironment
下载PDF
融合路径度量值和行重特性的Polar码SCL译码算法
17
作者 周泉 陈海强 +3 位作者 曾俏丽 廖兰娟 孙友明 黎相成 《电讯技术》 北大核心 2024年第2期295-301,共7页
首先提出基于初始对数似然比(Log-Likelihood Ratio,LR)与路径度量值(Path Metric,PM)的PM-LLR-SCL译码算法,在接收端初始LLR和PM值之间建立映射关系,并通过重排PM值完成翻转功能。其次,提出基于极化码生成矩阵的行重特性和PM值的PM-RW-... 首先提出基于初始对数似然比(Log-Likelihood Ratio,LR)与路径度量值(Path Metric,PM)的PM-LLR-SCL译码算法,在接收端初始LLR和PM值之间建立映射关系,并通过重排PM值完成翻转功能。其次,提出基于极化码生成矩阵的行重特性和PM值的PM-RW-SCL译码算法,不仅考虑了Polar码的最小码距和极化子信道可靠度,同时将路径分裂每一层的PM值引入到译码策略中,从而提高了译码性能。仿真结果显示,与串行抵消列表比特翻转(Successive Cancellation List Bit-flip,SCLF)相比,提出的PM-LLR-SCL算法最大可获得约0.23 dB的性能增益,而基于路径数量的复杂度降低了约62%;与基于行权重的串行抵消列表翻转译码算法相比,PM-RW-SCL算法最大可获得约1.5 dB的性能增益,而复杂度降低了约39%。 展开更多
关键词 Polar码 串行抵消列表比特翻转译码 路径度量值 行重特性
下载PDF
动态扰动辅助的串行抵消双比特翻转Polar译码算法
18
作者 曾俏丽 陈海强 +3 位作者 周泉 刘远博 孙友明 黎相成 《电讯技术》 北大核心 2024年第1期126-131,共6页
针对串行抵消翻转译码算法(Successive Cancellation Flip,SCF)受限于单比特翻转而性能提升有限问题,提出了一种双比特翻转译码算法(Successive Cancellation Flip with 2 Bits,SCF2)。针对SCP算法扰动方差初始值固定的问题,设计了一种... 针对串行抵消翻转译码算法(Successive Cancellation Flip,SCF)受限于单比特翻转而性能提升有限问题,提出了一种双比特翻转译码算法(Successive Cancellation Flip with 2 Bits,SCF2)。针对SCP算法扰动方差初始值固定的问题,设计了一种扰动方差可随码长和码率变化的改进SCP算法。在此基础上,结合翻转和扰动机制,提出了一种动态扰动辅助的串行抵消双比特翻转(Dynamic Perturbation-Aided SCF2,DPA-SCF2)译码算法,并对其译码复杂度和性能进行了分析。仿真结果显示,相比于列表长度为4的循环冗余校验辅助串行抵消列表(Cyclic Redundancy Check Aided Successive Cancellation List,CA-SCL)译码算法,所提算法最大可获得约0.5 dB的性能增益。 展开更多
关键词 Polar码 串行抵消翻转(SCF)译码 串行抵消扰动(SCP)译码 动态扰动
下载PDF
Role of N-formyl peptide receptor 2 in germinal matrix hemorrhage:an intrinsic review of a hematoma resolving pathway 被引量:3
19
作者 Jerry Flores Jiping Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期350-354,共5页
Germinal matrix hemorrhage is one of the leading causes of morbidity,mortality,and acquired infantile hydrocephalus in preterm infants in the United States,with little progress made in its clinical management.Blood cl... Germinal matrix hemorrhage is one of the leading causes of morbidity,mortality,and acquired infantile hydrocephalus in preterm infants in the United States,with little progress made in its clinical management.Blood clots have been shown to elicit secondary brain injury after germinal matrix hemorrhage,by disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage causing post-hemorrhagic hydrocephalus development.Current evidence suggests that rapid hematoma resolution is necessary to improve neurological outcomes after hemorrhagic stroke.Various articles have demonstrated the beneficial effects of stimulating the polarization of microglia cells into the M2 phenotype,as it has been suggested that they play an essential role in the rapid phagocytosis of the blood clot after hemorrhagic models of stroke.N-formyl peptide receptor 2(FPR2),a G-protein-coupled receptor,has been shown to be neuroprotective after stroke.FPR2 activation has been associated with the upregulation of phagocytic macrophage clearance,yet its mechanism has not been fully explored.Recent literature suggests that FPR2 may play a role in the stimulation of scavenger receptor CD36.Scavenger receptor CD36 plays a vital role in microglia phagocytic blood clot clearance after germinal matrix hemorrhage.FPR2 has been shown to phosphorylate extracellular-signal-regulated kinase 1/2(ERK1/2),which then promotes the transcription of the dual-specificity protein phosphatase 1(DUSP1)gene.In this review,we present an intrinsic outline of the main components involved in FPR2 stimulation and hematoma resolution after germinal matrix hemorrhage. 展开更多
关键词 AnxA1 FPR2 GMH hematoma resolution hemorrhagic stroke M1 M2 microglia polarization MICROGLIA PHAGOCYTOSIS
下载PDF
Interface Engineering of Titanium Nitride Nanotube Composites for Excellent Microwave Absorption at Elevated Temperature 被引量:3
20
作者 Cuiping Li Dan Li +4 位作者 Shuai Zhang Long Ma Lei Zhang Jingwei Zhang Chunhong Gong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期147-160,共14页
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently... Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering. 展开更多
关键词 TiN nanotubes Interface engineering Polarization loss Impedance matching Electromagnetic wave absorption performance
下载PDF
上一页 1 2 227 下一页 到第
使用帮助 返回顶部