A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetr...A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.展开更多
Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid pl...Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.展开更多
We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air hole...We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.展开更多
In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided m...In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.展开更多
We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed...We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach -58 dB and -60 dB and the bandwidths as the extinction ratio better than -12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm.展开更多
We report a polarization beam splitter based on phase gradient metasurface for microwave frequency region.The metasurface is constructed by anisotropic cells with independent phase response for differently-polarized w...We report a polarization beam splitter based on phase gradient metasurface for microwave frequency region.The metasurface is constructed by anisotropic cells with independent phase response for differently-polarized waves.Through putting different gradient phases for orthogonally-polarized waves on a focusing metasurface,the anisotropic sample has the ability to enhance gain and split orthogonally-polarized waves.The simulation results indicate that the incident spherical waves are converted into plane waves and split into an x-polarized wave with a refraction angle of-24° and a ypolarized wave with a refraction angle of 37.6° in the y direction.For verification,a metasurface sample with a size of 102.5 mm x 102.5 mm is fabricated and measured.The consistence between numerical and experimental results validates the improved gain of 10.5-dB against the feed source and the splitting effect.Moreover,the thickness of the proposed metasurface is 3 mm which is ultra-thin against the wavelength at 15 GHz.The proposed prescription opens a new route to the applications of anisotropic metasurface in microwave band.展开更多
This study has proposed and numerically demonstrated a compact terahertz wave polarization beam splitter. The splitter is built by using a asymmetrical directional coupler consisting of a bend waveguide and a slot ben...This study has proposed and numerically demonstrated a compact terahertz wave polarization beam splitter. The splitter is built by using a asymmetrical directional coupler consisting of a bend waveguide and a slot bend waveguides and achieves a high extinction ratio of 24.88 dB and 16.55 dB for cross and through ports. The optimal coupling region length is found to be 26 ttm. By using such a polarization beam splitter, the size of the terahertz wave system could he reduced significantly. The simulation results show that the designed polarization beam splitter can split TE- and TM-polarized terahertz wave into different propagation directions with high efficiency over the terahertz wave frequency range from 9.40 THz to 9.65 THz. The device obtained is readily used for a polarization diversity terahertz wave integrated circuit field, particularly for platforms with slot waveguide.展开更多
Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by ...Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is compo...We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz.展开更多
A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that ...A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4μm-l.7 μm and i% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.展开更多
Based on the traditional directional coupler, we proposed a scheme to design on-chip polarization beam splitters using an inverse design method. In our scheme, the coupling area of the designed devices are only 0.48 ...Based on the traditional directional coupler, we proposed a scheme to design on-chip polarization beam splitters using an inverse design method. In our scheme, the coupling area of the designed devices are only 0.48 μm× 6.4 μm. By manipulating the refractive index of the coupling region, the devices can work in C-band,L-band, O-band, or any other communication band. Different from conventional design methods, which need to adjust the design parameters artificially, if the initial conditions are determined, the proposed scheme can automatically adjust the design parameters of devices according to specific requirements. The simulation results show that the insertion losses of the designed polarization beam splitters can be less than 0.4 dB(0.35 dB) for TE(TM)mode at the wavelengths of 1310, 1550, and 1600 nm, and the extinction ratios are larger than 19.9 dB for the TE and TM modes at all three wavelengths. Besides, the extinction ratios of both polarization states are more than 14.5 dB within the wavelength range of 1286–1364 nm, 1497–1568 nm, and 1553–1634 nm. At the same time,the insertion losses are smaller than 0.46 dB.展开更多
Separating lights into different, paths according to the polarization states while keeping their respective path's polarizations with high purification is keen for polarization multiplex in optical communications....Separating lights into different, paths according to the polarization states while keeping their respective path's polarizations with high purification is keen for polarization multiplex in optical communications. Metallic nanowire gratings with multi-slits in a period are proposed to achieve polarized beam splitters (PBSs) in reflection and diffraction. The setting of multi-slits largely reduces the reflection of photons with a transverse magnetific field via the plasmonic waveguiding effect, which leads to highly polarized output lights with extinction ratio larger than 20 dB in each channel. The proposed reflection/diffraction PBSs enrich the approaches to control the polarization states with the advantages of wide incident angles and flexible beam splitting angles.展开更多
基金Project supported by the National Key Research and Development Project of China(Grant No.2019YFB2204001)。
文摘A novel polarization beam splitter(PBS)based on dual-core photonic crystal fiber(DC-PCF)is proposed in this work.The proposed DC-PCF PBS contains two kinds of lattices and three kinds of air holes to form the asymmetrical elliptic dual-core structure.By using the full-vector finite element method,the propagation characteristics of the proposed DC-PCF PBS are investigated.The simulation results show that the bandwidth of the proposed DC-PCF PBS can reach to 340 nm,which covers the S+C+L+U communication bands,the shortest splitting length is 1.97 mm,and the maximum extinction ratio appears near wavelength 1550 nm.Moreover,the insertion loss of the proposed DC-PCF PBS is very low.It is believed that the proposed DC-PCF PBS has important applications in the field of all-optical communication and network.
基金supported by the Shenzhen Science and Technology Program(JCYJ20210324093806017)the ShenzhenHong Kong Joint Innovation Foundation(SGDX20190919094401725)。
文摘Polarizing beam splitter has rather significant applications in polarization diversity circuits and polarization multiplexing systems.In this paper,we present an asymmetric polarizing beam splitter utilizing hybrid plasmonic waveguide.The special hybrid structure with a hybrid waveguide and a dielectric waveguide can limit the energy of TE and TM modes to a different layer.Therefore,we can achieve beam splitting by adjusting the corresponding parameters of the two waveguides.First,we studied the influences of different structure parameters on the real part of the effective mode refractive index of the two waveguides,and obtained a set of parameters that satisfy the condition of strong coupling of TM mode and weak coupling of TE mode.Then,the performance of our proposed polarizing beam splitter is evaluated numerically.The length of the coupling section is only 4.1μm,and the propagation loss of TM and TE modes is 0.0025 d B/μm and 0.0031 d B/μm respectively.Additionally,the extinction ratios of TM and TE modes are 10.62 d B and 12.55 d B,respectively.Particularly,the proposed device has excellent wavelength insensitivity.Over the entire C-band,the fluctuation of the whole normalized output power is less than 0.03.In short,our proposed asymmetric polarizing beam splitter features ultra-compactness,low propagation loss,and broad bandwidth,which would provide promising applications in polarization multiplexing system and polarization diversity circuits relevant to optical interconnection.
基金Project supported by the National Natural Science Foundation of China(Grant No.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We have proposed a novel kind of photonic crystal fiber which contains two asymmetric cores. The bireti'ingence and the dispersion are numerically analyzed based on finite element method when the size of the air holes and the pitch of two adjacent air holes are changed. It is shown that the proposed photonic crystal fiber has high birefringence up to the order of 10-2 and double-zero dispersion points are at the wavelengths of 1310 nm and 800 rim, simultaneously. At the same time, the normalized power and the extinction ratios of the proposed photonic crystal fiber have been simulated. It is demonstrated that, at the wavelength of 1310 rim, the x-polarized mode and the y-polarized mode are separated when the propagation distance is 2.481 ram.
基金supported by National Key Basic Research Special Fund of China (Grand No 2006CB921701-705)
文摘In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguldes is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.Sttm. A finite-difference tlme-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178026)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach -58 dB and -60 dB and the bandwidths as the extinction ratio better than -12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm.
基金supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘We report a polarization beam splitter based on phase gradient metasurface for microwave frequency region.The metasurface is constructed by anisotropic cells with independent phase response for differently-polarized waves.Through putting different gradient phases for orthogonally-polarized waves on a focusing metasurface,the anisotropic sample has the ability to enhance gain and split orthogonally-polarized waves.The simulation results indicate that the incident spherical waves are converted into plane waves and split into an x-polarized wave with a refraction angle of-24° and a ypolarized wave with a refraction angle of 37.6° in the y direction.For verification,a metasurface sample with a size of 102.5 mm x 102.5 mm is fabricated and measured.The consistence between numerical and experimental results validates the improved gain of 10.5-dB against the feed source and the splitting effect.Moreover,the thickness of the proposed metasurface is 3 mm which is ultra-thin against the wavelength at 15 GHz.The proposed prescription opens a new route to the applications of anisotropic metasurface in microwave band.
基金supported by the Zhejiang Province Natural Science Foundation for Distinguished Young Scientists under Grant No.LR12F05001the National Natural Science Foundation of China under Grant No.61379024 and 61131005
文摘This study has proposed and numerically demonstrated a compact terahertz wave polarization beam splitter. The splitter is built by using a asymmetrical directional coupler consisting of a bend waveguide and a slot bend waveguides and achieves a high extinction ratio of 24.88 dB and 16.55 dB for cross and through ports. The optimal coupling region length is found to be 26 ttm. By using such a polarization beam splitter, the size of the terahertz wave system could he reduced significantly. The simulation results show that the designed polarization beam splitter can split TE- and TM-polarized terahertz wave into different propagation directions with high efficiency over the terahertz wave frequency range from 9.40 THz to 9.65 THz. The device obtained is readily used for a polarization diversity terahertz wave integrated circuit field, particularly for platforms with slot waveguide.
基金(No. 2004C31107) supported by the Science and Technology Program of Zhejiang Province, China
文摘Polarizing beam splitter (PBS) is a critical optical component in projection display system because PBS performance greatly influences the contrast and brightness of the system. PBS performance is usually measured by spectrophotometer after coating and cementing, but the measured result cannot represent the actual performance in practice because people usually change the incident angle in one plane (horizontal plane) and do not consider the other plane (vertical plane). Geometrical polarization rotation occurring at reduced F-number influences the measuring precision of s-polarization transmittance (Ts) and p-polarization reflectance (Rp). A more accurate and practical way to measure the performance of broadband, wide-angle PBS is presented in this paper.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
基金supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘We propose an anisotropic planar transmitting metasurface, which has the ability to manipulate orthogonally-polarized electromagnetic waves in the reflection and refraction modes respectively. The metasurface is composed of four layered rectangular patches spaced by three layered dielectric isolators each with a thickness of 0.15λ0 at 15 GHz. By tailoring the sizes of the patches, the metasurface functions as a band-stop filter for the y-polarzied wave and a band-pass filter for the x-polarized wave operating from 14 GHz to 16 GHz. Moreover the phases of the transmitting x-polarized wave can be modulated at about 15 GHz, which contributes to beam steering according to the general refraction law. Experimental results are in good accordance with the simulated ones, in which the reflection efficiency is almost 100% while the transmission efficiency of the x-polarized wave reaches 80% at 15 GHz. Besides, the transmitted x-polarized wave is effectively manipulated from 14 GHz to 16 GHz.
基金supported by the Youth Science Research Foundation of China University of Mining and Technology (Grant No. 2009A058)the Natural Science Foundation of Shanghai Committee of Science and Technology (Grant No. 10ZR1433500)
文摘A broadband non-polarizing beam splitter (NPBS) operating in the telecommunication C+L band is designed by using the guided mode resonance effect of periodic silicon-on-insulator (SOI) elements. It is shown that this double layer SOI structure can provide ~50/50 beam ratio with the maximum divergences between reflection and transmission being less than 8% over the spectrum of 1.4μm-l.7 μm and i% in the telecommunication band for both TE and TM polarizations. The physical basis of this broadband non-polarizing property is on the simultaneous excitation of the TE and TM strong modulation waveguide modes near the designed spectrum band. Meanwhile, the electric field distributions for both TE and TM polarizations verify the resonant origin of spectrum in the periodic SOI structure. Furthermore, it is demonstrated with our calculations that the beam splitter proposed here is tolerant to the deviations of incident angle and structure parameters, which make it very easy to be fabricated with current IC technology.
基金National Natural Science Foundation of China(NSFC)(60907003)Natural Science Foundation of Hunan Province(13JJ3001)+1 种基金Program for New Century Excellent Talents in University(NCET)(NCET-12-0142)Foundation of NUDT(JC13-02-13)
文摘Based on the traditional directional coupler, we proposed a scheme to design on-chip polarization beam splitters using an inverse design method. In our scheme, the coupling area of the designed devices are only 0.48 μm× 6.4 μm. By manipulating the refractive index of the coupling region, the devices can work in C-band,L-band, O-band, or any other communication band. Different from conventional design methods, which need to adjust the design parameters artificially, if the initial conditions are determined, the proposed scheme can automatically adjust the design parameters of devices according to specific requirements. The simulation results show that the insertion losses of the designed polarization beam splitters can be less than 0.4 dB(0.35 dB) for TE(TM)mode at the wavelengths of 1310, 1550, and 1600 nm, and the extinction ratios are larger than 19.9 dB for the TE and TM modes at all three wavelengths. Besides, the extinction ratios of both polarization states are more than 14.5 dB within the wavelength range of 1286–1364 nm, 1497–1568 nm, and 1553–1634 nm. At the same time,the insertion losses are smaller than 0.46 dB.
基金supported by the National Natural Science Foundation of China(Nos.61775136 and 11721091)
文摘Separating lights into different, paths according to the polarization states while keeping their respective path's polarizations with high purification is keen for polarization multiplex in optical communications. Metallic nanowire gratings with multi-slits in a period are proposed to achieve polarized beam splitters (PBSs) in reflection and diffraction. The setting of multi-slits largely reduces the reflection of photons with a transverse magnetific field via the plasmonic waveguiding effect, which leads to highly polarized output lights with extinction ratio larger than 20 dB in each channel. The proposed reflection/diffraction PBSs enrich the approaches to control the polarization states with the advantages of wide incident angles and flexible beam splitting angles.