Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many u...Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.展开更多
Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)mic...Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)microscopy and structured illumination microscopy(SIM)can be grouped into one class of the super-resolution imaging technology,which use pattern illumination strategy to circumvent the di®raction limit.We simulated the images of the beads of SIM imaging,the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality.Compared to¯xed linear polarization,circularly polarized light is more suitable for SIM on reconstructed image.And right-handed circular polarization(CP)light is more appropriate for both the excitation and depletion light in STED system.Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope.Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality.展开更多
In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthal...In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.展开更多
Qualification of polarization can be realized either on a macroscopic scale as an average property by P-E hysteresis measurements or on a nano/micro scale by piezoelectric force microscopy,transmission electron micros...Qualification of polarization can be realized either on a macroscopic scale as an average property by P-E hysteresis measurements or on a nano/micro scale by piezoelectric force microscopy,transmission electron microscopy,scanning electron microscopy,and so on.However,visualization and qualification of polarization distribution in the micron to millimeter scale is still a challenge.Polarizing light microscopy(PLM)is often used in the study of ferroelectric domain structures mainly for domain patterns.A phe-nomenon called“chromatic polarization”has been observed in transparent ferroelectric crystals by using a crossed-PLM system viewed with white light,which contains rich information about local polariza-tion distribution.In this study,an automatic full-angle light intensity detection(AFALID)algorithm com-bined with colorimetry is developed to analyze the distribution of nonuniform local spontaneous polar-ization distribution in transparent ferroelectric single crystals.Temperature-dependent spontaneous po-larizations from the color analysis for PMN-0.36PT single crystals with single tetragonal domain state are in good coincidence with those extracted from temperature-dependent hysteresis loops and pyroelectric current measurements.We further apply this method to quantify the nonuniform domain distributions with nano-indentations.This non-contact and non-destructive characterization can provide fast and au-tomatic detection of polarization distributions in ferroelectric materials.展开更多
The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls o...The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information.We demonstrated a parametric indirect microscopic imaging(PIMI)technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution,based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated.The finite-difference time-domain(FDTD)numerical simulation was performed,and the experimental results were compared with atomic force microscopic(AFM)images to verify the resolution improvement achieved with PIMI.This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution,compared with using the conventional optical microscopy,while retaining its advantage of a wide field of view and relatively low cost.展开更多
基金supported by the Alpha Foundation for the Improvement of Mine Safety and Health,grant number AFC316FO-84.
文摘Exposure to respirable coal mine dust(RCMD)can cause chronic and debilitating lung diseases.Real-time monitoring capabilities are sought which can enable a better understanding of dust components and sources.In many underground mines,RCMD includes three primary components which can be loosely associated with three major dust sources:coal dust from the coal seam itself,silicates from the surrounding rock strata,and carbonates from the inert‘rock dust’products that are applied to mitigate explosion hazards.A monitor which can reliably partition RCMD between these three components could thus allow source apportionment.And tracking silicates,specifically,could be valuable since the most serious health risks are typically associated with this component-particularly if abundant in crystalline silica.Envisioning a monitoring concept based on field microscopy,and following up on prior research using polarized light,the aim of the current study was to build and test a model to classify respirable-sized particles as either coal,silicates,or carbonates.For model development,composite dust samples were generated in the laboratory by successively depositing dust from high-purity materials onto a sticky transparent substrate,and imaging after each deposition event such that the identity of each particle was known a priori.Model testing followed a similar approach,except that real geologic materials were used as the source for each dust component.Results showed that the model had an overall accuracy of 86.5%,indicating that a field-microscopy based moni-tor could support RCMD source apportionment and silicates tracking in some coal mines.
基金This work was partly supported by the National Key Basic Research Program of China (973 project)under Grant No.2015CB352006the National Natural Science Foundation of China under Grant Nos.61335011 and 61405035Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT 15R10.
文摘Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)microscopy and structured illumination microscopy(SIM)can be grouped into one class of the super-resolution imaging technology,which use pattern illumination strategy to circumvent the di®raction limit.We simulated the images of the beads of SIM imaging,the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality.Compared to¯xed linear polarization,circularly polarized light is more suitable for SIM on reconstructed image.And right-handed circular polarization(CP)light is more appropriate for both the excitation and depletion light in STED system.Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope.Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0301003)the Shenzhen Free Exploring Basic Research Project (No. JCYJ20170307110223452)。
文摘In this paper,two ways of micro structural characterization,optical microscopy(OM) and polarized light microscopy(PLM),were both employed to describe the micro structure of semisolid slurry prepared by swirling enthalpy equilibration device(SEED).The results show that PLM is more reliable and accurate than OM to describe the special morphology feature of semisolid slurry made by SEED process.Meanwhile,the effects of pouring temperature and mass of molten liquid on the primary α-Al particle size and morphology were also investigated using PLM.The quantitative metallographic results measured from PLM demonstrate that the grain size and morphology and their distribution are significantly affected by both pouring temperature and the mass of molten liquid.The grain size poured with 2.7 kg liquid decreases from 659 to186 μm,and grain morphology transforms from dendrite to globular structure with pouring temperature reducing from690 to 630℃.The decreasing pouring temperature also promotes the distribution of spherical structure on the cross section.Meanwhile,the mass of molten liquid decreasing from 2.7 to 2.3 kg can decrease the grain size by maximum of 44% at high pouring temperature.
基金This work is financially supported by the National Key Re-search and Development Program of China(No.2021YFF0501001)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2020A006)the Open Fund of Key Laboratory for In-telligent Nano Materials and Devices of the Ministry of Education NJ2022002(No.INMD-2022M08).
文摘Qualification of polarization can be realized either on a macroscopic scale as an average property by P-E hysteresis measurements or on a nano/micro scale by piezoelectric force microscopy,transmission electron microscopy,scanning electron microscopy,and so on.However,visualization and qualification of polarization distribution in the micron to millimeter scale is still a challenge.Polarizing light microscopy(PLM)is often used in the study of ferroelectric domain structures mainly for domain patterns.A phe-nomenon called“chromatic polarization”has been observed in transparent ferroelectric crystals by using a crossed-PLM system viewed with white light,which contains rich information about local polariza-tion distribution.In this study,an automatic full-angle light intensity detection(AFALID)algorithm com-bined with colorimetry is developed to analyze the distribution of nonuniform local spontaneous polar-ization distribution in transparent ferroelectric single crystals.Temperature-dependent spontaneous po-larizations from the color analysis for PMN-0.36PT single crystals with single tetragonal domain state are in good coincidence with those extracted from temperature-dependent hysteresis loops and pyroelectric current measurements.We further apply this method to quantify the nonuniform domain distributions with nano-indentations.This non-contact and non-destructive characterization can provide fast and au-tomatic detection of polarization distributions in ferroelectric materials.
基金the National Major Scientific Instruments and Equipment Development Project under Grant No.61827814the National Natural Science Foundation of China(NSFC)under Grant No.61501239+5 种基金the NSFC International Young Scientist Research Fund under Grant No.61750110520the Hubei Polytechnic University Laboratory Fund under Grant No.19XJK24Rthe Jiangsu Postdoc Research Fund under Grant No.1601001Bthe Beijing Natural Science Foundation under Grant No.Z190018the Fundamental Research Funds for the Central Universities under Grant No.30920010011the UK Engineering and Physical Sciences Research Council under Grant No.EP/R042578/1。
文摘The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information.We demonstrated a parametric indirect microscopic imaging(PIMI)technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution,based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated.The finite-difference time-domain(FDTD)numerical simulation was performed,and the experimental results were compared with atomic force microscopic(AFM)images to verify the resolution improvement achieved with PIMI.This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution,compared with using the conventional optical microscopy,while retaining its advantage of a wide field of view and relatively low cost.