Two different poling techniques-corona poling and contact poling in the backdrop of electro-optic (EO) polymer modulators are compared. A 3-layer structure EO polymer modulator is prepared for the poling. The poling...Two different poling techniques-corona poling and contact poling in the backdrop of electro-optic (EO) polymer modulators are compared. A 3-layer structure EO polymer modulator is prepared for the poling. The poling setups and procedures of these two different methods are given. It is found that a well-controlled precure step is very critical, otherwise it will result in either lower poling efficiency or damaged film. Experimental results show that contact poling does not create severe surface damage as corona poling and poling voltage is much lower, but corona poling provides higher EO effect than contact poling. Besides, contact poling can provide poling size as large as the substrate size.展开更多
In this paper, the poling properties of (PS)O-DCV, a derivative of poly (p-hydroxystyrene ), was reported. The investigations showed that the thermochromism correction, which was neglected in the literatures, should b...In this paper, the poling properties of (PS)O-DCV, a derivative of poly (p-hydroxystyrene ), was reported. The investigations showed that the thermochromism correction, which was neglected in the literatures, should be considered in the measurements of order parameter of poled films with electrochromism technique Here, another linear optical method, IR and polarized IR spectra for characterizing of poled films was suggested first time. The bulk second nonlinear optical coefficient d_(33) of poled films could be estimated by measured order parameter semi-qualitatively.展开更多
In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also invest...In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also investigated the role of capping on the SHG, temporal stability and relaxation of dipole alignment. Corona poling techniques were employed to orient the dopants into the noncentrosymmetric structure required to obtain the SHG. The effect of capping with a polymeric encapsulant below the glass transition temperature of the polymers on the unpoled and corona poled thin films was studied. Capping of the nonlinear polymer and guest host thin films have resulted in high SHG with good temporal stability. SHG signal falls drastically during the first 8 days after poling while no further significant decay in SHG signal was observed after about 33 days. Our investigations have identified the characteristics required for a good encapsulant on a non-con-ductive surface.展开更多
Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are...Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.展开更多
Nowadays,there is considerable research interest in proposing modern permanent magnet(PM)electric machine structures for applications such as electric vehicles.Several radial and axial topologies with different arrang...Nowadays,there is considerable research interest in proposing modern permanent magnet(PM)electric machine structures for applications such as electric vehicles.Several radial and axial topologies with different arrangements of PM in the stator and rotor have been introduced for PM Vernier motors(PMVM)with the aim of increasing the performance characteristics such as power factor,efficiency,rotational torque torque density and wider constant torque-speed region.Meanwhile,the spoke PM arrangement has provided higher torque density than the surface and V-shaped arrangement.But in contrast,the V-shaped arrangement has a more sinusoidal flux and less cogging torque.In this paper,a 620 W,12-slot 16-pole Vernier PM motor with a fractional slot arrangement.Consequent K-shaped pole is introduced,which has the advantages of spoke and V-shaped magnetic arrangements.After presenting and confirming the concept of the proposed structure based on functional comparison with conventional structures,an analytical modeling based on the harmonic analysis method is introduced to accurately predict the performance of the machine,and finally the proposed structure is prototyped and the experimental results are simulated and modeling are compared.展开更多
In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the I...In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.展开更多
Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span ...Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span has greatly reduced to 5 years. The current study was designed to evaluate wood deteriorating agents of CCA-treated Eucalyptus poles and variability in four eco-regions of Kenya, namely, dryland, coastal, highland and humid lake. A total of 360 Eucalyptus pole samples were used for this experiment. Three CCA treatments were used to treat transmission poles at 20 kg/cm3 fencing posts samples at 6 kg/cm3, and a control group. Results indicated that termites and wood-decay fungi attacks caused wood deterioration in the four eco-regions. The proportion of power transmission pole degradation by wood deteriorating agents varied across eco-regions, between treatments and control and between time after treatments. Dryland eco-regions had the highest termite-related degradation (41.82%) while wood-decay fungi attack was highest in the highland eco-regions (9.20%). Samples treated with 6 kg/cm3 recorded the lowest level of wood deterioration, manifested by minimal superficial termite and wood-decay fungi attack. Samples treated with 20 kg/cm3 were characterized by moderate termite and wood-decay fungi attacks observed around the heartwood region, unlike sapwood. This study concluded that the deterioration of Eucalyptus CCA-treated poles is a question of climatic variability and hence, to increase the poles’ lifespan, CCA treatment should be tailored according to the characteristics of the ecoregion of use. Further investigations will inform the diversity of termites and decay-fungi across different eco-regions.展开更多
Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providi...Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.展开更多
Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy cu...Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.展开更多
Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify ig...Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.展开更多
A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stabili...A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.展开更多
文摘Two different poling techniques-corona poling and contact poling in the backdrop of electro-optic (EO) polymer modulators are compared. A 3-layer structure EO polymer modulator is prepared for the poling. The poling setups and procedures of these two different methods are given. It is found that a well-controlled precure step is very critical, otherwise it will result in either lower poling efficiency or damaged film. Experimental results show that contact poling does not create severe surface damage as corona poling and poling voltage is much lower, but corona poling provides higher EO effect than contact poling. Besides, contact poling can provide poling size as large as the substrate size.
文摘In this paper, the poling properties of (PS)O-DCV, a derivative of poly (p-hydroxystyrene ), was reported. The investigations showed that the thermochromism correction, which was neglected in the literatures, should be considered in the measurements of order parameter of poled films with electrochromism technique Here, another linear optical method, IR and polarized IR spectra for characterizing of poled films was suggested first time. The bulk second nonlinear optical coefficient d_(33) of poled films could be estimated by measured order parameter semi-qualitatively.
文摘In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also investigated the role of capping on the SHG, temporal stability and relaxation of dipole alignment. Corona poling techniques were employed to orient the dopants into the noncentrosymmetric structure required to obtain the SHG. The effect of capping with a polymeric encapsulant below the glass transition temperature of the polymers on the unpoled and corona poled thin films was studied. Capping of the nonlinear polymer and guest host thin films have resulted in high SHG with good temporal stability. SHG signal falls drastically during the first 8 days after poling while no further significant decay in SHG signal was observed after about 33 days. Our investigations have identified the characteristics required for a good encapsulant on a non-con-ductive surface.
文摘Multi-phase machines are so attractive for electrical machine designers because of their valuable advantages such as high reliability and fault tolerant ability.Meanwhile,fractional slot concentrated windings(FSCW)are well known because of short end winding length,simple structure,field weakening sufficiency,fault tolerant capability and higher slot fill factor.The five-phase machines equipped with FSCW,are very good candidates for the purpose of designing motors for high reliable applications,like electric cars,major transporting buses,high speed trains and massive trucks.But,in comparison to the general distributed windings,the FSCWs contain high magnetomotive force(MMF)space harmonic contents,which cause unwanted effects on the machine ability,such as localized iron saturation and core losses.This manuscript introduces several new five-phase fractional slot winding layouts,by the means of slot shifting concept in order to design the new types of synchronous reluctance motors(SynRels).In order to examine the proposed winding’s performances,three sample machines are designed as case studies,and analytical study and finite element analysis(FEA)is used for validation.
文摘Nowadays,there is considerable research interest in proposing modern permanent magnet(PM)electric machine structures for applications such as electric vehicles.Several radial and axial topologies with different arrangements of PM in the stator and rotor have been introduced for PM Vernier motors(PMVM)with the aim of increasing the performance characteristics such as power factor,efficiency,rotational torque torque density and wider constant torque-speed region.Meanwhile,the spoke PM arrangement has provided higher torque density than the surface and V-shaped arrangement.But in contrast,the V-shaped arrangement has a more sinusoidal flux and less cogging torque.In this paper,a 620 W,12-slot 16-pole Vernier PM motor with a fractional slot arrangement.Consequent K-shaped pole is introduced,which has the advantages of spoke and V-shaped magnetic arrangements.After presenting and confirming the concept of the proposed structure based on functional comparison with conventional structures,an analytical modeling based on the harmonic analysis method is introduced to accurately predict the performance of the machine,and finally the proposed structure is prototyped and the experimental results are simulated and modeling are compared.
基金Supported by International Meridian Circle Program Headquarters,China-Brazil Joint Laboratory for Space Weather(Y42347A99S)。
文摘In 2024,the Chinese Meridian Project(CMP)completed its construction,deploying 282 instruments across 31 stations.This achievement not only provides a robust foundation but also serves as a reference template for the International Meridian Circle Program(IMCP).The IMCP aims to integrate and establish a comprehensive network of ground-based monitoring stations designed to track the propagation of space weather events from the Sun to Earth.Additionally,it monitors various disturbances generated within the Earth system that impact geospace.Over the past two years,significant progress has been made on the IMCP.In particular,the second phase of construction for the China-Brazil Joint Laboratory for Space Weather has been completed,and the North Pole and Southeast Asia networks are under active construction.The 2024 IMCP joint observation campaign was successfully conducted.To facilitate these developments,the scientific program committee of IMCP was established,following the success of 2023 IMCP workshop and the space weather school,which was co-hosted with the Asia-Pacific Space Cooperation Organization(APSCO)and sponsored by Chinese Academy of Sciences(CAS)and Scientific Committee on Solar-Terrestrial Physics(SCOSTEP).Preparations are now underway for the 2024 workshop in collaboration with the National Institute for Space Research(INPE)in Brazil.
文摘Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span has greatly reduced to 5 years. The current study was designed to evaluate wood deteriorating agents of CCA-treated Eucalyptus poles and variability in four eco-regions of Kenya, namely, dryland, coastal, highland and humid lake. A total of 360 Eucalyptus pole samples were used for this experiment. Three CCA treatments were used to treat transmission poles at 20 kg/cm3 fencing posts samples at 6 kg/cm3, and a control group. Results indicated that termites and wood-decay fungi attacks caused wood deterioration in the four eco-regions. The proportion of power transmission pole degradation by wood deteriorating agents varied across eco-regions, between treatments and control and between time after treatments. Dryland eco-regions had the highest termite-related degradation (41.82%) while wood-decay fungi attack was highest in the highland eco-regions (9.20%). Samples treated with 6 kg/cm3 recorded the lowest level of wood deterioration, manifested by minimal superficial termite and wood-decay fungi attack. Samples treated with 20 kg/cm3 were characterized by moderate termite and wood-decay fungi attacks observed around the heartwood region, unlike sapwood. This study concluded that the deterioration of Eucalyptus CCA-treated poles is a question of climatic variability and hence, to increase the poles’ lifespan, CCA treatment should be tailored according to the characteristics of the ecoregion of use. Further investigations will inform the diversity of termites and decay-fungi across different eco-regions.
文摘Aluminum light poles play a pivotal role in modern infrastructure, ensuring proper illumination along highways and in populated areas during nighttime. These poles typically feature handholes near their bases, providing access to electrical wiring for installation and maintenance. While essential for functionality, these handholes introduce a vulnerability to the overall structure, making them a potential failure point. Although prior research and analyses on aluminum light poles have been conducted, the behavior of smaller diameter poles containing handholes remains unexplored. Recognizing this need, a research team at the University of Akron undertook a comprehensive experimental program involving aluminum light poles with handholes containing welded inserts in order to gain a better understanding of their fatigue life, mechanical behavior, and failure mechanisms. The research involved testing seven large-scale aluminum light poles each 8-inch diameter, with two separate handholes. These handholes included a reinforcement that was welded to the poles. Finite Element Analysis (FEA), statistical analysis, and comparison analysis with their large counterparts (10-inch diameter) were used to augment the experimental results. The results revealed two distinct failure modes: progressive crack propagation leading to ultimate failure, and rupture of the pole near the weld initiation/termination site around the handhole. The comparison analysis indicated that the 8-inch diameter specimens exhibited an average fatigue life exceeding that of their 10-inch counterparts by an average of 30.7%. The experimental results were plotted alongside the fatigue detail classifications outlined in the Aluminum Design Manual (ADM), enhancing understanding of the fatigue detail category of the respective poles/handholes.
文摘Aiming at the problem of high temperature and even demagnetization failure of permanent magnet (PM) due to PM eddy current loss in PM synchronous high-speed motors, this paper proposes a technique to lessen PM eddy current loss by cutting the angle of PM poles to change the shape of PM structure. Firstly, an analysis is conducted on the mechanism of PM synchronous high-speed motor eddy current loss production, the theoretical analytical model of PM eddy current loss is deduced, and it is theoretically proved that the magnetic pole shaving angle can reduce PM eddy current loss. Then, a 25 KW surface-type PM synchronous high-speed motor as an object, using two-dimensional time-step finite element method (FEM) to model and analyze PM eddy current loss. The results show that the smaller the PM pole shaving angle, the less its eddy current loss will be, it is possible to minimize the pole shaving angle of eddy current loss by 9.8% compared to the unshaved angle. Finally, the temperature field of the PM is calculated using a finite element method, and the outcomes demonstrate that the maximum temperature of the PM with a magnetic pole shaving angle can be reduced by about 5% compared with the unshaved angle.
基金the National 863 Projects(Nos.2006AA06Z111,2006AA06201-3,and 2006AA09A101-3)National Special Project(No.SinoProbe-01-05)Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942).
文摘Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.
文摘A stable CMOS low drop-out regulator without an off-chip capacitor for system-on-chip application is presen- ted. By using an on-chip pole splitting technique and an on-chip pole-zero canceling technique, high stability is achieved without an off-chip capacitor. The chip was implemented in CSMC's 0.5μm CMOS technology and the die area is 600μm×480μm. The error of the output voltage due to line variation is less than -+ 0.21% ,and the quiescent current is 39.8μA. The power supply rejection ratio at 100kHz is -33.9dB, and the output noise spectral densities at 100Hz and 100kHz are 1.65 and 0.89μV √Hz, respectively.