Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is ...The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.展开更多
The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has bec...The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.展开更多
Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.Th...Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.展开更多
Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be co...Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.展开更多
Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying...Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.展开更多
Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characte...Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characteristics of regional ANSP and combing with the seasonal water quality monitoring of Dalian Lake and reaches of its main influents,the laws of seasonal impact on the water environment were investigated.The results showed that,the seasonal change of TN and COD concentration of regional water had no significant correlation with the local ANSP emissions,while the seasonal changes of TP was consistent with seasonal emissions of regional TP pollution,and it had a significant correlation with Chl.a in four seasons,indicating that regional TP pollutant was the constriction factor influenced the eutrophication degree of Dalian lake.Because more than 80% of TP emissions came from the drainage of intensive pounds in winter,summer and fall,TP pollutant control should be adopted as the control target of regional ANSP control.展开更多
[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigate...[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.展开更多
Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and...Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and methods are very important in agricultural nonpoint source pollution control. This paper reviews the various monitoring techniques of agricultural non-point source pollution, including runoff pollutant monitoring, leaching pollutant monitoring and on-line monitoring. The runoff pollutant monitoring methods are mainly included artificial simulation of rain- fall runoff method, flow meter method, weir method and volumetric method. The leaching pollutant monitoring methods are mainly included leaching plate method, leaching gutter method, leakage pooling method, pumping filter pipe method and simulating soil column method. Although online monitoring of farmland nutrient loss still exists some technical bottlenecks and economic limitations, it is the future di- rection of development.展开更多
Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China t...Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.展开更多
Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and ...Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and poultry breeding and rural domestic pollution on non-point source TN and TP.At last,some technical countermeasures of controlling non-point source pollution were put forward according to the characteristics of agricultural non-point source pollution in Xinan River basin.展开更多
Taihu Lake area is one of the most developed areas in agricultural production. Application of fertilizers and pesticides in large quantities greatly aggravate environmental pollution of this area, and water pollution ...Taihu Lake area is one of the most developed areas in agricultural production. Application of fertilizers and pesticides in large quantities greatly aggravate environmental pollution of this area, and water pollution has worsened to an unbearable condition. Two sampling farms (respectively 1 hm2) under rape-rice rotation and wheat-rice rotation were selected as studied ecosystem and a 5-yr-old Poplar forest and 8-yr-old Metasequoia forest were chosen in the selected areas. By collecting samples of Nitrogen, Phosphorus in water, crops and underground of forest, the transfer and loss of N and P (main water pollutants) in faming ecosystem were studied, and the effects of forest belts on non-point source pollution of agricultural lands was analyzed. The results indicated that the transfer and loss of N and P vary with means of rotation, types of crops and the amount of fertilizer application. Buffering forest belts betweens farmlands and ditches can effectively stop and purify such elements as N and P in soil runoffs, thus controlling non-point source pollution of agricultural lands. When the width ratio of farmland to forest belt is 100 to 40, 50.05% losing N, 29.37% losing P can be absorbed by forest under rape-rice rotation and 30.98% N, 86.73% P can be absorbed by forest under wheat-rice rotation. When the width ratio of farmland to forest belt is 150 to 40, 33.37% losing N, 19.58% losing P can be absorbed by the forest under rape-rice rotation, and under wheat-rice rotation 20.65% lost N and 57.82% lost P can be absorbed. There is only some purification effect when the width ration of farmland to forest belt is 200 to 40. Based on model of buffering forest belts, the width ratio of farmland to forest is determined between 100 to 40 and 150 to 40, because it not only can purify water, but also occupy less farmland. It is suggested that Poplars, with the characteristics of fast-growing and high value, are suitable to be planted as shelter-forest in Taihu Lake Watershed.展开更多
Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological sou...Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.展开更多
It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N p...It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N pollution result-ing from excessive N input.Here,we calculate the farmland N budget on the national and regional scales.The N use efficiency(NUE)in China increased by 28.0%during 2005-2018.This improvement is due to the reduction in fertilization and the improvement of crop management.The fragmented farmland is changing to large-scale farmland with the increase in cultivated land area per rural population and the development of agricultural mech-anization.This opportunity brings more possibilities for precision farmland management,thus further improving NUE.The goal of an NUE of 0.6 may be achieved in the 2040s based on the current development trend.This striking N use shift in China has important implications for other developing countries.展开更多
This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic...This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic equations for the concentrations u(x, t) and v(x, t) with an unknown point source F(x, t) = A( t)δ(x- s) related to the concentration u(x, t), where s is the point source location and A(t) is the amplitude of the pollution point source. Assuming that source F becomes inactive after time T*, it is proved that it can be uniquely determined by the indirect measurements { v(0, t), v( a, t), v( b, t), v( l, t), 0 〈 t ≤ T, T* 〈 T}, and, thus, the local Lipschitz stability for this inverse source problem is obtained. Based on the proof of its uniqueness, an inversion scheme is presented to determine the point source. Finally, two numerical examples are given to show the feasibility of the inversion scheme.展开更多
As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in ...As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.展开更多
The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system ...The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.展开更多
The applicability of a non-point source pollution model—SWAT(soil and water assessment tools) in a large river basin with high sediment runoff modulus(770 t/km2 in the Yellow River) was examined. The basic database, ...The applicability of a non-point source pollution model—SWAT(soil and water assessment tools) in a large river basin with high sediment runoff modulus(770 t/km2 in the Yellow River) was examined. The basic database, which includes DEM, soil and landuse map, weather data, and land management data, was established for the study area using GIS. A two-stage “Brute Force' optimization method was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997. In the process of calibration automated digital filter technique was used to separate direct runoff and base flow. The direct runoff was firstly calibrated, and the base flow, then the total runoff was matched. The sediment yield was calibrated to match well. Keeping input parameters set during the calibration process unchanged, the model was validated with 1998—1999's observed monthly flow and sediment. The evaluation coefficients for simulated and observed flow and sediment showed that SWAT was successfully applied in the study area: relative error was within 20%, coefficient of determination and Nash-Suttcliffe simulation efficiency were all equal to or above 0.70 during calibration and validation period.展开更多
Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify th...Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.展开更多
The Australian farming sector is continuing to intensify, particularly within 300 km of the east and southern coastlines. In the future there will be fewer and larger farms, which will use more fertilizer, support mor...The Australian farming sector is continuing to intensify, particularly within 300 km of the east and southern coastlines. In the future there will be fewer and larger farms, which will use more fertilizer, support more stock, grow more monoculture crops, and utilise more marginal soils. This is likely to increase the major environmental impacts of soil degradation, salt, nutrient and sediment contamination of waterways, and greenhouse gas emissions. Australian national water policy continues to focus on land, stream and groundwater salinity issues, although there is now a greater recognition of the importance of nitrogen and phosphorus losses from agriculture. The general philosophy of policy for dealing with non- point source pollution has been towards a voluntary rather than regulatory approach, with state and national governments supporting a range of programs to encourage sustainable agricultural practices. A catchment (watershed) based approach, through the use of integrated catchment management plans, is the primary way that non-point source pollution is addressed at the farm and local level. At an industry level, cotton, grains, meat, sugarcane and dairy amongst others, as well as the Australian fertilizer industry, have responded to non-point source issues by investing in research and development, and developing codes of practice aimed at abating these environmental impacts. Understanding the economic, social, political and cultural contexts of farming as well as the environmental impacts of agriculture are very important in determining the appropriateness of policy responses for Australian farming systems.展开更多
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金support from the National Key Research and Development Program of China(No.2018YFD0900704)the National Natural Science Foundation of China(No.31972796).
文摘The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.
文摘The growth of society and population has led to a range of water pollution issues.Among these,non-point source pollution assessment and treatment pose a particular challenge due to its formation mechanism.This has become a focal point and challenge in water pollution treatment research.The study area for this research was the Huanghou basin in Guizhou Province,southwest China.The land use type of the basin was analyzed using remote sensing technology,and water quality data was collected by distributing points throughout the basin,based on source-sink landscape theory.The distribution map of the basin’s source-sink landscape and the results of water quality data accurately and efficiently identified the areas with high risk of non-point source pollution in the western and southwestern residential and agricultural areas of the upper basin.Hence,a strategy of“increasing sinks and decreasing sources”was proposed.The strategy was implemented at both macro and micro levels to address non-point source pollution in the basin using ecological remediation techniques.The work to control karst rocky desertification should continue at a macro level.The rocky desertification area in the basin should gradually transform into grassland and forested land,while increasing the overall area of the sink landscape.Ecological restoration techniques,such as slope planting,riparian zone vegetation restoration,increasing plant abundance,and restoring aquatic plants,can effectively control non-point source pollution at the micro level.Compared to traditional control methods,this remediation strategy focuses on source and process control.It is more effective and does not require large-scale water pollution control projects,which can save a lot of environmental control funds and management costs.Therefore,it has greater research significance and application value.
基金funded by the Deanship of Scientific Research,Jordan University of Science and Technology(20210159).
文摘Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.
基金supported by Zhejiang A&F University(2022LFR083)Key R&D Program of Zhejiang Province(2021C02038)the International Centre for Bamboo and Rattan(1632021006)。
文摘Nitrogen(N)present in drinking water as dissolved nitrates can directly affect people’s health,making it important to control N pollution in water source areas.N pollution caused by agricultural fertilizers can be controlled by reducing the amount of fertilizer applied,but pollution caused by soil and water erosion in hilly areas can only be controlled by conservation forests.The catchment area around Fushi Reservoir was selected as a test site and mechanisms of N loss from a vertical spatial perspective through field observations were determined.The main N losses occurred from June to September,accounting for 85.9-95.9%of the annual loss,with the losses in June and July accounting for 46.0%of the total,and in August and September for 41.9%.The N leakage from the water source area was effectively reduced by 38.2%through the optimization of the stand structure of the conservation forests.Establishing well-structured forests for water conservation is crucial to ensure the security of drinking water.This preliminary research lays the foundation for revealing then loss mechanisms in water source areas and improving the control of non-point source pollution in these areas.
基金funded and supported by the Youth Science and Technology Project of Henan Provincial Bureau of Geology and Mineral Resources,YDKQKC[2008]No.8.
文摘Over the years,the Shaying River Basin has experienced frequent instances of river pollution.The presence of numerous critical pollutant discharge enterprises and sewage-treatment plants in the vicinity of the Shaying River has transformed it a major tributary with relatively serious pollution challenge within the upper reaches of Huaihe River Basin.To study the sources of manganese(Mn),chromium(Cr),nickel(Ni),arsenic(As),cadmium(Cd)and lead(Pb)in Shaying River water,123 sets of surface water samples were collected from 41 sampling points across the entire basin during three distinct phases from 2019 to 2020,encompassing normal water period,dry season and wet season.The primary origins of heavy metals in river water were determined by analyzing the heavy metal contents in urban sewage wastewater,industrial sewage wastewater,groundwater,mine water,and the heavy metal contributions from agricultural non-point source pollution.The analytical findings reveal that Mn primarily originates from shallow groundwater used for agricultural irrigation,While Cr mainly is primarily sourced from urban sewage treatment plant effluents,coal washing wastewater,tannery wastewater,and industrial discharge related to metal processing and manufacturing.Ni is mainly contributed by urban sewage treatment plant effluents and industrial wastewater streams associated with machinery manufacturing and metal processing.Cd primarily linked to industrial wastewater,particularly from machinery manufacturing and metal processing facilities,while Pb is predominantly associated with urban sewage treatment plant effluents and wastewater generated in Pb processing and recycling wastewater.These research provides a crucial foundation for addressing the prevention and control of dissolved heavy metals at their sources in the Shaying River.
基金Supported by Science and Technology Support Program in Shanghai Science and Technology Committee (08DZ1203200, 08DZ1203205)~~
文摘Taken the Dalian lake region as the study area,which represents the typical agriculture production mode and agricultural non-point source pollution (ANSP) in Dianshan lake area in Shanghai City,basis on the characteristics of regional ANSP and combing with the seasonal water quality monitoring of Dalian Lake and reaches of its main influents,the laws of seasonal impact on the water environment were investigated.The results showed that,the seasonal change of TN and COD concentration of regional water had no significant correlation with the local ANSP emissions,while the seasonal changes of TP was consistent with seasonal emissions of regional TP pollution,and it had a significant correlation with Chl.a in four seasons,indicating that regional TP pollutant was the constriction factor influenced the eutrophication degree of Dalian lake.Because more than 80% of TP emissions came from the drainage of intensive pounds in winter,summer and fall,TP pollutant control should be adopted as the control target of regional ANSP control.
基金Supported by Major Projects of National Water Pollution Control and Management (2008ZX07209-007)
文摘[Objective] The characteristic of non-point source pollution of a typical village in Baiyangdian Lake basin was studied.[Method] The discharge of domestic sewage and solid wastes of the typical village was investigated,and both pollutant and nutrient element content were monitored,as well as the water quality and quantity of rainfall runoff.[Result] The non-point source pollution of livestock manure was far more serious than the sum of domestic sewage and domestic waste in this village,and the annual emission of total organic carbon(TOC),total nitrogen(TN) and total phosphorus(TP) was 37 794.0,4 102.9 and 1 923.7 kg,respectively.The event mean concentration(EMC)of chemical oxygen demand COD,TN and TP in rainfall runoff was 44.5,78.8,1.3 mg/L,respectively,and annual pollution load was 7.6,13.4 and 0.2 kg/hm2,respectively,while the annual pollution load of COD accounted for 5.1% of standard farmland,and that of TN and TP occupied 4.5% and 0.49% of slope farmland.[Conclusion] Livestock manure was the main source of non-point source pollution in the village and the annual pollution load of non-point source pollution was obtained.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201003014)Key Projects in the National Science&Technology Pillar Program(2012BAD15B03)~~
文摘Farmland nutrient loss has become one of the main reason causing agri- cultural nonpoint source pollution and water nitrogen, phosphorus eutrophication. Agricultural nonpoint source pollution monitoring techniques and methods are very important in agricultural nonpoint source pollution control. This paper reviews the various monitoring techniques of agricultural non-point source pollution, including runoff pollutant monitoring, leaching pollutant monitoring and on-line monitoring. The runoff pollutant monitoring methods are mainly included artificial simulation of rain- fall runoff method, flow meter method, weir method and volumetric method. The leaching pollutant monitoring methods are mainly included leaching plate method, leaching gutter method, leakage pooling method, pumping filter pipe method and simulating soil column method. Although online monitoring of farmland nutrient loss still exists some technical bottlenecks and economic limitations, it is the future di- rection of development.
基金supported by the National Natural Science Foundation of China(72373117)the Chinese Universities Scientific Fund(Z1010422003)+1 种基金the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education(22JJD790052)the Qinchuangyuan Project of Shaanxi Province(QCYRCXM-2022-145).
文摘Improving cultivated land use eco-efficiency(CLUE)can effectively promote agricultural sustainability,particularly in developing countries where CLUE is generally low.This study used provincial-level data from China to evaluate the spatiotemporal evolution of CLUE from 2000 to 2020 and identified the influencing factors of CLUE by using a panel Tobit model.In addition,given the undesirable outputs of agricultural production,we incorporated carbon emissions and nonpoint source pollution into the global benchmark-undesirable output-super efficiency-slacks-based measure(GB-US-SBM)model,which combines global benchmark technology,undesirable output,super efficiency,and slacks-based measure.The results indicated that there was an upward trend in CLUE in China from 2000 to 2020,with an increase rate of 2.62%.The temporal evolution of CLUE in China could be classified into three distinct stages:a period of fluctuating decrease(2000-2007),a phase of gradual increase(2008-2014),and a period of rapid growth(2015-2020).The major grain-producing areas(MPAs)had a lower CLUE than their counterparts,namely,non-major grain-production areas(non-MPAs).The spatial agglomeration effect followed a northeast-southwest strip distribution;and the movement path of barycentre revealed a"P"shape,with Luoyang City,Henan Province,as the centre.In terms of influencing factors of CLUE,investment in science and technology played the most vital role in improving CLUE,while irrigation index had the most negative effect.It should be noted that these two influencing factors had different impacts on MPAs and non-MPAs.Therefore,relevant departments should formulate policies to enhance the level of science and technology,improve irrigation condition,and promote sustainable utilization of cultivated land.
文摘Taking Xinan River basin as research object,the status of agricultural non-point source pollution was analyzed based on field survey,as well as the effect of fertilizer and pesticide leaching and runoff,livestock and poultry breeding and rural domestic pollution on non-point source TN and TP.At last,some technical countermeasures of controlling non-point source pollution were put forward according to the characteristics of agricultural non-point source pollution in Xinan River basin.
基金This paper was supported by the Environmental Protection Foundation of Jiangsu Province (2000(二) 0009) National Natural Science Foundation of China (NSFC39970605).
文摘Taihu Lake area is one of the most developed areas in agricultural production. Application of fertilizers and pesticides in large quantities greatly aggravate environmental pollution of this area, and water pollution has worsened to an unbearable condition. Two sampling farms (respectively 1 hm2) under rape-rice rotation and wheat-rice rotation were selected as studied ecosystem and a 5-yr-old Poplar forest and 8-yr-old Metasequoia forest were chosen in the selected areas. By collecting samples of Nitrogen, Phosphorus in water, crops and underground of forest, the transfer and loss of N and P (main water pollutants) in faming ecosystem were studied, and the effects of forest belts on non-point source pollution of agricultural lands was analyzed. The results indicated that the transfer and loss of N and P vary with means of rotation, types of crops and the amount of fertilizer application. Buffering forest belts betweens farmlands and ditches can effectively stop and purify such elements as N and P in soil runoffs, thus controlling non-point source pollution of agricultural lands. When the width ratio of farmland to forest belt is 100 to 40, 50.05% losing N, 29.37% losing P can be absorbed by forest under rape-rice rotation and 30.98% N, 86.73% P can be absorbed by forest under wheat-rice rotation. When the width ratio of farmland to forest belt is 150 to 40, 33.37% losing N, 19.58% losing P can be absorbed by the forest under rape-rice rotation, and under wheat-rice rotation 20.65% lost N and 57.82% lost P can be absorbed. There is only some purification effect when the width ration of farmland to forest belt is 200 to 40. Based on model of buffering forest belts, the width ratio of farmland to forest is determined between 100 to 40 and 150 to 40, because it not only can purify water, but also occupy less farmland. It is suggested that Poplars, with the characteristics of fast-growing and high value, are suitable to be planted as shelter-forest in Taihu Lake Watershed.
基金Supported by Guangxi Agricultural Key Science & Technology Program(201528)Nanning Science Research and Technology Development Planning Program(20152054-13)+2 种基金Guangxi Science Research and Technology Development Planning Program(15104001-22)Guangxi Academy of Agricultural Sciences S&T Development Foundation(TF06)Xixiangtang District Science Research and Technology Development Planning Program(2015312)~~
文摘Non-point source pollution has become a hot issue on aquatic ecological environment at home and abroad. The research analyzed the challenges confronted by Xi River and proposed to construct agricultural ecological source in middle and upper reaches of the Xi River from the perspectives of scientific layout, legal construction, routine monitoring, technology integration, and coordination system in order to promote sustainable development of eco-environment in Xi River.
基金supported by the National Natural Science Foun-dation of China(Grants No.U21A2025 and 41907151)the National Key Research and Development Program of China(Grant No.2022YFD1700700).
文摘It is never an easy task for China to feed 1.4 billion people with only 7%of the world's arable land.With nearly 30%of the world's nitrogen(N)fertilizer applied,China achieves high crop yields while facing N pollution result-ing from excessive N input.Here,we calculate the farmland N budget on the national and regional scales.The N use efficiency(NUE)in China increased by 28.0%during 2005-2018.This improvement is due to the reduction in fertilization and the improvement of crop management.The fragmented farmland is changing to large-scale farmland with the increase in cultivated land area per rural population and the development of agricultural mech-anization.This opportunity brings more possibilities for precision farmland management,thus further improving NUE.The goal of an NUE of 0.6 may be achieved in the 2040s based on the current development trend.This striking N use shift in China has important implications for other developing countries.
基金The National Natural Science Foundation of China(No.10861001)the Natural Science Foundation of Jiangxi Province
文摘This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic equations for the concentrations u(x, t) and v(x, t) with an unknown point source F(x, t) = A( t)δ(x- s) related to the concentration u(x, t), where s is the point source location and A(t) is the amplitude of the pollution point source. Assuming that source F becomes inactive after time T*, it is proved that it can be uniquely determined by the indirect measurements { v(0, t), v( a, t), v( b, t), v( l, t), 0 〈 t ≤ T, T* 〈 T}, and, thus, the local Lipschitz stability for this inverse source problem is obtained. Based on the proof of its uniqueness, an inversion scheme is presented to determine the point source. Finally, two numerical examples are given to show the feasibility of the inversion scheme.
基金Supported by National Key Basic Research Development Plan(973) Early Special Item(2008CB41720)Yunnan Application Basic Research Apparent Project (2009ZC083M)+1 种基金Yunnan Technological Plan Project (2008CA006)Apparent Fund Project of South West Forestry University (200804M)~~
文摘As the main external pollution source of lake,nitrogen and phosphorus from agricultural non-point source make a great contribution to the lake eutrophication pollution.Wetland lakefront zone which plays a key role in externally agricultural non-point source pollution is considered as the biggest barrier for controlling external pollution.In this research,the Jian lake plateau Zizania latifolia wetland lakefront zone was selected for agricultural non-point source pollutions control with the systematic field research,and the lakefront zone was approved to have an effective purification effect on nitrogen and phosphorus from Jinlong River; the theoretical mechanism of lakefront zone removing nutrient was also investigated.Z.latifolia wetland lakefront zone could remove nitrogen and phosphorus from Jinlong River and the removal ratio can reach 55.8-62.52% and 59.47-69.81% respectively.So,we can indicate that the Jian Lake plateau Z.latifolia wetland lakefront zone had a good effect on controlling agricultural non-point source pollution and protecting the environment.
基金Project supported by the State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (No. 035109)the National Natural Science Foundation of China (No. 30390080).
文摘The nitrogen (N) pollution status of the 12 most important rivers in Changshu, Taihu Lake region was investigated. Water samples were collected from depths of 0.5-1.0 m with the aid of the global positioning system (GPS). The seasonal variations in the concentrations of different N components in the rivers were measured. Using tension-free monolith lysimeters and ^15N-labeled fertilizer, field experiments were carried out in this region to determine variations of iSN abundance of NO3^- in the leachate during the rice and wheat growing seasons, respectively. Results showed that the main source of N pollution of surface waters in the Taihu Lake region was not the N fertilizer applied in the farmland but the urban domestic sewage and rural human and animal excreta directly discharged into the water bodies without treatment. Atmospheric dry and wet N deposition was another evident source of N pollutant of the surface waters. In conclusion, it would not be correct to attribute the N applied to farmlands as the source of N pollution of the surface waters in this region.
文摘The applicability of a non-point source pollution model—SWAT(soil and water assessment tools) in a large river basin with high sediment runoff modulus(770 t/km2 in the Yellow River) was examined. The basic database, which includes DEM, soil and landuse map, weather data, and land management data, was established for the study area using GIS. A two-stage “Brute Force' optimization method was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997. In the process of calibration automated digital filter technique was used to separate direct runoff and base flow. The direct runoff was firstly calibrated, and the base flow, then the total runoff was matched. The sediment yield was calibrated to match well. Keeping input parameters set during the calibration process unchanged, the model was validated with 1998—1999's observed monthly flow and sediment. The evaluation coefficients for simulated and observed flow and sediment showed that SWAT was successfully applied in the study area: relative error was within 20%, coefficient of determination and Nash-Suttcliffe simulation efficiency were all equal to or above 0.70 during calibration and validation period.
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2004CB418502,No. 2007CB407205)the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX1-YW-09-13)
文摘Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.
基金supported by the China Council for International Cooperation on Environment and Development (CCICED)
文摘The Australian farming sector is continuing to intensify, particularly within 300 km of the east and southern coastlines. In the future there will be fewer and larger farms, which will use more fertilizer, support more stock, grow more monoculture crops, and utilise more marginal soils. This is likely to increase the major environmental impacts of soil degradation, salt, nutrient and sediment contamination of waterways, and greenhouse gas emissions. Australian national water policy continues to focus on land, stream and groundwater salinity issues, although there is now a greater recognition of the importance of nitrogen and phosphorus losses from agriculture. The general philosophy of policy for dealing with non- point source pollution has been towards a voluntary rather than regulatory approach, with state and national governments supporting a range of programs to encourage sustainable agricultural practices. A catchment (watershed) based approach, through the use of integrated catchment management plans, is the primary way that non-point source pollution is addressed at the farm and local level. At an industry level, cotton, grains, meat, sugarcane and dairy amongst others, as well as the Australian fertilizer industry, have responded to non-point source issues by investing in research and development, and developing codes of practice aimed at abating these environmental impacts. Understanding the economic, social, political and cultural contexts of farming as well as the environmental impacts of agriculture are very important in determining the appropriateness of policy responses for Australian farming systems.