The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat...Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, th...Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, therefore a controllable delivery of aspirin is of importance to lighten those side effects. In this work, poly(lactic acid)(PLA) was chosen as the carrier to prepare PLA-aspirin microspheres by using the traditional and the improved solvent evaporation methods. It was found that no matter which experimental condition was, the encapsulation efficiency of aspirin was higher by using the improved method than that of the traditional method. Specifically, when the concentration of polyvinyl alcohol = 1%(mass),the polymer concentration = 1:20, the oil/water rate = 1:2.5, PLA-aspirin microspheres were obtained via the improved method with a high yield of 82.83%(mass) and an encapsulation efficiency of 44.09%. PLAaspirin microspheres were then prepared continuously using the improved method, which further enhanced the encapsulation efficiency to 54.56%. Approximate 85% aspirin released from microspheres within 7 days. Obvious degradation which was represented by reduction on hardness was observed by soaking microspheres in PBS for 60 days. This work is of interest because it provides a continuous route to prepare PLA-aspirin microspheres continuously with a high drug encapsulation efficiency.展开更多
A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ...A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).展开更多
The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(...The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.展开更多
Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields...Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.展开更多
Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chit...Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.展开更多
A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive...A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.展开更多
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L...Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.展开更多
In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with ...In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.展开更多
Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved ...Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved flexibility together with good biocompatibility. In this study, p-dioxanone (PDO) was employed to copolymerize with DL-lactide (LA) via ring-opening melt polymerization using Sn(Oct)2 as an initiator and ethylene glycol as a co-initiator. The obtained degradable macrodiols (HO-P(LA-co-PDO)-OH) were just such a copolymer consisting of PLA, GA and EG. 1HNMR was employed to characterize the copolymers, and the effect of PDO/LA molar ratios in the feedstock on the molecular weights of HO-P(LA-co-PDO)-OH was investigated by means of endhydroxyl analysis, 1H NMR or GPC-MALLs. The results confirmed the successful synthesis of HO-P(LA-co-PDO)-OH and revealed that one end-hydroxyl of the micarodiols was donated by LA or PDO and the other one by the co-initiator EG. In addition, the molecular weights of HO-P(LA-co-PDO)-OH increased with decreasing PDO/LA ratios.展开更多
High molecular weight(Mw) poly(L-lactic acid)s(PLLAs) were synthesized using multifunctional epoxy compound(Joncryl-ADR4370) as chain extender. The products were characterized by gel permeation chromatography...High molecular weight(Mw) poly(L-lactic acid)s(PLLAs) were synthesized using multifunctional epoxy compound(Joncryl-ADR4370) as chain extender. The products were characterized by gel permeation chromatography(GPC) and spectroscopy(1HNMR and FTIR). The results indicated that the Mw of PLLA increased with the increasing of the ratio of epoxy compound and the extending of reaction time. The highest Mw of PLLA reached 360 000 g/mol when the ratio of epoxy compound was 1.5 wt%. However, the reactants turned to cross-linking when the ratio of epoxy compound was over 1.5 wt%. Differential scanning calorimetry(DSC) measurements demonstrated that the glass transition(Tg) and melting temperatures(Tm) of products increased slightly as the increase of the molecular weight. Analysis of the hydrolytic degradation in vitro showed that the branched PLLA possessed the quicker degradability than that of the linear PLLA.展开更多
Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in whi...Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.展开更多
Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Metho...Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37℃ and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%, 18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigidity.decreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30% respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones.展开更多
In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were...In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.展开更多
Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(...Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.展开更多
The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide ...The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties,cellulose was functionalized with poly(glutamic acid).The modified cellulose nanocrystals were better distributed and less aggregated within the matrix,which was testified by scanning electron,optical and polarized light microscopy.According to mechanical tests,composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus,elongation at break and tensile strength.Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca^(2+)deposits with Alizarin Red S assay testified better mineralization of materials containing PGlu-modified cellulose nanocrystals as filler.As the result of in vivo experiment,the developed composite materials showed less level of inflammation in comparison with pure polymer matrix and composites filled with non-functionalized cellulose nanocrystals.展开更多
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te...Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.展开更多
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20591,52203201,52173149,and 81971174)the Youth Talents Promotion Project of Jilin Province(Grant No.202019)+1 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101114JC)Research Cooperation Platform Project of Sino-Japanese Friendship Hospital of Jilin University and Basic Medical School of Jilin University(Grant No.KYXZ2022JC04).
文摘Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金financially supported by National Natural Science Foundation of China (22068018)Yunnan Ten Thousand Talents Plan Young & Elite Talents Project。
文摘Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, therefore a controllable delivery of aspirin is of importance to lighten those side effects. In this work, poly(lactic acid)(PLA) was chosen as the carrier to prepare PLA-aspirin microspheres by using the traditional and the improved solvent evaporation methods. It was found that no matter which experimental condition was, the encapsulation efficiency of aspirin was higher by using the improved method than that of the traditional method. Specifically, when the concentration of polyvinyl alcohol = 1%(mass),the polymer concentration = 1:20, the oil/water rate = 1:2.5, PLA-aspirin microspheres were obtained via the improved method with a high yield of 82.83%(mass) and an encapsulation efficiency of 44.09%. PLAaspirin microspheres were then prepared continuously using the improved method, which further enhanced the encapsulation efficiency to 54.56%. Approximate 85% aspirin released from microspheres within 7 days. Obvious degradation which was represented by reduction on hardness was observed by soaking microspheres in PBS for 60 days. This work is of interest because it provides a continuous route to prepare PLA-aspirin microspheres continuously with a high drug encapsulation efficiency.
基金This study was supported by the National Natural Science Foundation of China(No.30270395 and 30300084)the National"863"Project(No.2003AA32X210).
文摘A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).
基金Supported by the National Natural Science Foundation of China (20876042) Program of Shanghai Subject Chief Scientist (10XD1401500) Research Fund for the Doctoral Program of Higher Education of China
文摘The effect of a novel active nucleating agent(TBC8-eb) on the isothermal crystallization of poly(L-lactic acid) (PLLA) was studied by differential scanning calorimetry(DSC) and Fourier transform infrared spectroscopy(FTIR) . The analysis on kinetics demonstrates that TBC8-eb can not only accelerate the crystallization rate but also transform most of the original spherulite crystals of PLLA into sheaf-like crystals. Furthermore,the free energy of folding(σe) of PLLA and PLLA with TBC8-eb is 0.15 and 0.06 J·m-2,respectively,which suggests that the addition of TBC8-eb favors the regular folding of molecule chains in the crystallization of PLLA,improv-ing its crystallization rate. The FTIR results show that TBC8-eb can accelerate the conformational ordering of PLLA in the isothermal crystallization. The conformational ordering of PLLA nucleated with TBC8-eb begins with the interchain interaction of CH3,and then a short helix emerges where a couple of CH3 groups interact.
基金This work was financially supported by the following funds:Hunan Provincial Natural Foundation of China(2019JJ50472)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)+4 种基金Hunan Province Key Field R&D Program Project(2019GK2246)Education Department of Hunan Province Key Project(19A391)Key scientific research project of Huaihua University(HHUY2019-04)Special Project of Innovative Provincial Construction in Hunan Province(2020RC1013)Huaihua Key Laboratory for Preparation of Ceramic Materials and Devices and Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.
文摘Biodegradable chitosan-g-poly (D, L-lactic acid) copolymers were prepared via two methods. (1) The lactide was grafted onto hydroxyl groups of chitosan by using macromolecular initiator sodium of trimethylsilyl-chitosan, (2) poly (D,L-lactic acid)(PLA) with low molecular weight can be linked to the amino group by coupling activated PLA to trimethylsilyl-chitosan. Two graft copolymers had hydrophilic-hydrophobic character and can be applied as carriers for drug delivery.
文摘A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.
基金sponsored by the Science and Technology Foundation of Tianjin Health Bureau,No. 2010ky04the Application Basis and Front Technology Projects of Tianjin (Science and Technology Foundation of Tianjin),No.12JCYBJC18000
文摘Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.
基金The authors thank the Ministry of Science and Technology,the National Natural Science Foundation of China and the Ministry of Education of China for supporting of this research(Grant No.G199905305,59973014 and 98005620,respectively).
文摘In this paper, the surface structure of poly(L-lactic acid) (PLLA) film modified with gelatin was investigated. ThePLLA film specimens were treated directly with aqueous alkali solution to provide their surfaces with carboxyl groups, sothat these functional groups could become the reactive sites for gelatin immobilization. The functional groups of the PLLAfilms were identified by ATR-FTIR spectra and XPS spectra, the changes in surface morphology were observed by usingenvironmental scanning electron microscopy (ESEM), and the hydrophilicity of modified PLLA films was examined bywater contact angle measurement. Experimental results showed that the gelatin was immobilized with water-solublecarbodiimide (EDC) onto the PLLA film's surfaces, and the gelatin content on the polymer surface was related to carboxylicgroup formed in the controlled hydrolysis process. Rough surfaces caused by hydrolysis will predominantly favor the adhesion and growth of cell; and the hydrophilicity of these surfaces after the modification procedure is enhanced.
基金supported by the National Key Technologies R&D Program of China(No.2006BA103B04)the Natural Key Scientific and Technological Project of Chongqing(No.CSTC 2008AB0027)
文摘Integrating poly(lactic acid) (PLA), glycolic acid (GA) and ethylene glycol (EG) will hopefully result in a novel copolymer that combines such advantages as fastened and controllable release rate and improved flexibility together with good biocompatibility. In this study, p-dioxanone (PDO) was employed to copolymerize with DL-lactide (LA) via ring-opening melt polymerization using Sn(Oct)2 as an initiator and ethylene glycol as a co-initiator. The obtained degradable macrodiols (HO-P(LA-co-PDO)-OH) were just such a copolymer consisting of PLA, GA and EG. 1HNMR was employed to characterize the copolymers, and the effect of PDO/LA molar ratios in the feedstock on the molecular weights of HO-P(LA-co-PDO)-OH was investigated by means of endhydroxyl analysis, 1H NMR or GPC-MALLs. The results confirmed the successful synthesis of HO-P(LA-co-PDO)-OH and revealed that one end-hydroxyl of the micarodiols was donated by LA or PDO and the other one by the co-initiator EG. In addition, the molecular weights of HO-P(LA-co-PDO)-OH increased with decreasing PDO/LA ratios.
基金Funded by the National Natural Science Foundation of China (No.30870609)the Natural Science Foundation of Chongqing (Nos.2009BA4025 and CSTC2009BB4382)the Foundation of Chongqing Municipal Education Commission(No.KJ091415)
文摘High molecular weight(Mw) poly(L-lactic acid)s(PLLAs) were synthesized using multifunctional epoxy compound(Joncryl-ADR4370) as chain extender. The products were characterized by gel permeation chromatography(GPC) and spectroscopy(1HNMR and FTIR). The results indicated that the Mw of PLLA increased with the increasing of the ratio of epoxy compound and the extending of reaction time. The highest Mw of PLLA reached 360 000 g/mol when the ratio of epoxy compound was 1.5 wt%. However, the reactants turned to cross-linking when the ratio of epoxy compound was over 1.5 wt%. Differential scanning calorimetry(DSC) measurements demonstrated that the glass transition(Tg) and melting temperatures(Tm) of products increased slightly as the increase of the molecular weight. Analysis of the hydrolytic degradation in vitro showed that the branched PLLA possessed the quicker degradability than that of the linear PLLA.
基金Supported by the National Natura Science Foundation of China (21076185).
文摘Equilibrium sorption amount, desorption diffusion coefficients and sorption diffusion coefficients of CO2 in poly(l-lactic acid) (PLLA) films at elevated pressures were determined by the gravimetric method, in which the Fick's diffusion model was applied to analyze both the desorption and sorption processes. The equilibrium sorption amount of CO2 in PLLA increased with lowering temperature and elevating pressure at the temperature range from 40 to 60 ℃ and pressure from 10^4 to 2x10^4 kPa. Desorption diffusion coefficients were greatly influenced by the equilibrium sorption amount, and they were in the same order of magnitude as the sorption diffusion coefficients. The scan electron microscope (SEM) photos demonstrated that there was no foaming phenomenon of the PLLA film during desorption and sorption processes. The XRD spectra implied that the crystalline degree of PLLA film decreased after CO2 processing. It was concluded that PLLA polymer could be well swollen and plasticized by supercritical CO2.
文摘Objective:To observe the changing of biomechanical features during the degradation course of poly-D,L-lactic acid (PDLLA) rods in vivo and in vitro and to evaluate its value as an internal fixation material. Methods :PDLLA rods were emerged into PBS simultaneous body fluid with constant temperature of 37℃ and the rods were embedded into muscle tissue of 20 rabbits for degradation in vitro and in vivo . The rods were taken out in 2, 4, 6, 8 and 12 weeks. Biomechanical features of bending, shearing and axial compression strength, rigidity and elastic modulus were observed during the degradation course. Statistical method was used to test the changes of biomechanical parameters. Results: (1)There was similar changes of bending, compressive, shearing strength and bending, compressive and shearing rigidity of the PDLLA rods between in vivo and in vitro. (2)Bending, compressive, shearing strength decreased 33%, 18 % and 43 % respectively within the first stage of the degradation, and after 6 weeks of degradation, they decreased slowly. (3)Elastic modulus, bending, compressive and shearing rigidity.decreased sharply during the 6 weeks of degradation, with a drop of 22%, 39% and 30% respectively, and after 8 weeks, they decreased slowly. Even after 12 weeks of degradation, the strength of the rods was still higher than that of sponge bone. Conclusion: During the degradation of the material, the strength and rigidity of PDLLA rods can meet the need of fracture fixation of cancellous bones.
基金supported by the National Natural Science Foundation of China,No.51073072the Natural Science Foundation of Zhejiang Province in China,No.Y4100745+1 种基金the Key Laboratory Open Foundation of Advanced Textile Materials&Manufacturing Technology of Zhejiang Sci-Tech University from Ministry of Education of China,No.2009007the Science and Technology Commission of Jiaxing Municipality Program,No.2010AY1089
文摘In this study, poly(L-lactic acid)/ammonium persulfate doped-polypyrrole composite fibrous scaffolds with moderate conductivity were produced by combining electrospinning with in situ polymerization. PC12 cells were cultured on these fibrous scaffolds and their growth following electrical stimulation (0-20.0 μA stimulus intensity, for 1-4 days) was observed using inverted light microscopy, and scanning electron microscopy coupled with the MTT cell viability test. The results demonstrated that the poly(L-lactic acid)/ammonium persulfate doped-polypyrrole fibrous scaffold was a dual multi-porous micro/nano fibrous scaffold. An electrical stimulation with a current intensity 5.0- 10.0 μAfor about 2 days enhanced neuronal growth and neurite outgrowth, while a high current intensity (over 15.0 μA) suppressed them. These results indicate that electrical stimulation with a moderate current intensity for an optimum time frame can promote neuronal growth and neurite outgrowth in an intensity- and time-dependent manner.
基金Supported by the National Natural Science Foundation of China (21076084)the Fundamental Research Funds for the Central Universities (2011ZZ0006)the Open Project Program of Provincial Key Laboratory of Green Processing Technology and Product Safety of Natural Products
文摘Paclitaxel(PTX) is an effective anticancer drug with poor solubility in water.Recently,much effort has been devoted into alternative formulations of PTX for improving its aqueous solubility.In this study,PTX and poly(L-lactic acid)(PLLA) were co-precipitated by a supercritical antisolvent(SAS) process using dichloromethane(DCM) and the mixtures of DCM/ethanol(EtOH) or DCM/dimethyl sulfoxide(DMSO) as the solvent,with super-critical carbon dioxide as the antisolvent.The effects of solvent,solvent ratio,temperature,pressure,polymer con-centration and solution flow rate on particle morphology,mass median diameter(Dp50) and PTX loading were in-vestigated using single-factor method.The particle samples were characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),laser diffraction particle size analyzer and high pressure liquid chromatogra-phy(HPLC).XRD results indicate that the micronized PTX is dispersed into the PLLA matrix in an amorphous form.SEM indicates that the solvent and the solvent ratio have great effect on the particle morphologies,and particle morphology is good at the volume ratio of DCM/EtOH of 50/50.For the mixed DCM/EtOH solvent,Dp50 increases with the increase of the temperature,pressure,PLLA concentration and solution flow rate,and PTX loading in-creases with pressure.Suitable operating conditions for the experimental system are as follows:DCM/EtOH 50/50(by volume),35 ℃,10-12 MPa,PLLA concentration of 5 g·L-1 and solution flow rate of 0.5 ml·min-1.
基金funded by the Russian Ministry of Education and Science(state contract no.14.W03.31.0014,MegaGrant).
文摘The biocomposite films were prepared from poly(L-lactic acid)and cellulose nanocrystals.To improve interfacial compatibility of hydrophilic cellulose nanocrystals with hydrophobic matrix polymer as well as to provide the osteoconductive properties,cellulose was functionalized with poly(glutamic acid).The modified cellulose nanocrystals were better distributed and less aggregated within the matrix,which was testified by scanning electron,optical and polarized light microscopy.According to mechanical tests,composites filled with nanocrystals modified with PGlu demonstrated higher values of Young’s modulus,elongation at break and tensile strength.Incubation of composite materials in model buffer solutions for 30 weeks followed with staining of Ca^(2+)deposits with Alizarin Red S assay testified better mineralization of materials containing PGlu-modified cellulose nanocrystals as filler.As the result of in vivo experiment,the developed composite materials showed less level of inflammation in comparison with pure polymer matrix and composites filled with non-functionalized cellulose nanocrystals.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22379143)。
文摘Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.