Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indi...Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.展开更多
To improve the water tree resistance of PE, linear low-density polyethylene (LLDPE) was compounded with sodium acrylate (NaAA) for in situ polymerization, in which NaAA was fbrmed through the neutralization of acr...To improve the water tree resistance of PE, linear low-density polyethylene (LLDPE) was compounded with sodium acrylate (NaAA) for in situ polymerization, in which NaAA was fbrmed through the neutralization of acrylic acid (AA) with sodium hydroxide (NaOH) before adding dicumyl peroxide (DCP) to initiate the in situ graft polymerization and homo polymerization. A series of LLDPE/NaAA compounds were investigated for their water absorption ratio (WAR) measurement, water treeing, mechanical and dielectric properties. The results strongly suggest that NaAA can improve the water tree resistance of LLDPE. In addition, the LLDPE/NaAA compounds possess satisfactory mechanical properties and dielectric properties. Characterization of LLDPE/NaAA compounds by using Fourier transform infrared spectrometry (FTIR) suggests that the neutralization and polymerization reaction could be achieved effectively. Using adequate DCP content is the key factor for controlling the polymerization of NaAA with precise conversion ratio.展开更多
Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques. Two different methods have been used to introduce—COONa groups into polymer chains of the gels: (1) by partial hydrolysis of ...Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques. Two different methods have been used to introduce—COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media, in order to explain these differences, ^(13)C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels.展开更多
The interaction of poly(sodium sulfodecyl methacrylate) (PSSM) with cetyltrimethyl ammonium bromide (CTAB)was studied. It was found that the precipitate formed from PSSM and CTAB will be dissolved by excessive CTAB, r...The interaction of poly(sodium sulfodecyl methacrylate) (PSSM) with cetyltrimethyl ammonium bromide (CTAB)was studied. It was found that the precipitate formed from PSSM and CTAB will be dissolved by excessive CTAB, resultingin the appearance of two maxima of the solution viscosity at the molar ratio (CTAB/-SO_3^-) of≈ 0.68 and≈1.30,respectively. The first one is related closely to the aggregation of polymer chains via CTAB molecules and the second oneshould be ascribed to the formation of the mixed micelles comprising surfactant and the polymer's hydrophobic chains. Theeffect of NaCl on the viscosity, the transmittance of the aqueous solution and the solubility of oil-soluble dye (dimethyl yellow) in the mixed system were also investigated.展开更多
The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, tr...The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.展开更多
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
The urethane acrylate(UA) was made of poly(tetramethylenc oxide), 4,4’-diphenylmethane diisocyanate, and 2-hydroxyethyl methacrylate. A series of poly(methyl methacrylate) / urethane acrylate copolymers was prepared ...The urethane acrylate(UA) was made of poly(tetramethylenc oxide), 4,4’-diphenylmethane diisocyanate, and 2-hydroxyethyl methacrylate. A series of poly(methyl methacrylate) / urethane acrylate copolymers was prepared by using a redox initiating system. The copolymers had cross linked structures and two-phase morphologies as indicated by the results of the dynamic mechanical measurement and swelling test.展开更多
A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA...A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.展开更多
Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At ap...Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At apre - expansion temperature of 45℃), amorphous polymer was formed. At temperature around 60 ℃ to 80 ℃ , fibers were formed. Increase of temperature increasesparticle size slightly. At temperature of 105℃ , most of particles are spheres. The RESS is an attractive process. To apply the polymers desired for coating applications in an organic solvent - free process that is economically viable , and it will have implications for pollution prevention during polymer film展开更多
Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl...Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction termi-nating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emul-sion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containingvarious concentrations of PEO-A was studied. In all cases stable emulsion coplymerizationsof MMA and BA were obtained. The stabilizing effect was found to be dependent on themolecular weight and the feed amount of the macromonomer.展开更多
Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil&gas production wells and transportation p...Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil&gas production wells and transportation pipelines.In this paper,a new KHI,poly(N-vinyl caprolactam)-co-tert-butyl acrylate(PVCapco-TBA),was successfully synthesized with N-vinyl caprolactam(NVCap)and tert-butyl acrylate.The kinetic inhibition performances of PVCap-co-TBA on the formations of both structureⅠmethane hydrate and structureⅡnatural gas hydrate were investigated by measuring the onset times of hydrate formation under different conditions and compared with commercial KHIs such as PVP,PVCap and inhibex 501.The results indicated that PVCap-co-TBA outperformed these widely applied inhibitors for both structureⅠand structureⅡhydrates.At the same dosage of KHI,the maximum tolerable degree of subcooling under which the onset time of hydrate formation exceeded 24 hours for structureⅠhydrate was much lower than that for structureⅡhydrate.The inhibition strength increased with the increasing dosage of PVCap-co-TBA;The maximum tolerable degree of subcooling for the natural gas hydrate is more than10 K when the dosage was higher than 0.5%(mass)while it achieved 12 K when that dosage rose to0.75%(mass).Additionally,we found polypropylene glycol could be used as synergist at the dosage of 1.0%(mass)or so,under which the kinetic inhibition performance of PVCap-co-TBA could be improved significantly.All evaluation results demonstrated that PVCap-co-TBA was a very promising KHI and a competitive alternative to the existing commercial KHIs.展开更多
In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization ...In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization and its polymer have been discussed.展开更多
The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s me...The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C∞ and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.展开更多
Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acryla...Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).展开更多
Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60...Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic...The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.展开更多
The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using poly...The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using polychelates,PAA-Co X(X:3,5,7,and 10)where X represents the doping fraction(w/w)of Co in PAA.All polymer metal electrolytes were showed excellent bending-stretching properties,thermal stability and electrochemical durability with an optimum ionic conductivity of 3.15×10^(-4) S cm^(-1).Hierarchically porous activated carbon and nano-sized conductive carbon were used to form carbon composite symmetrical device electrodes.The electric double-layer capacitor(EDLC)and redox reactions of Co-incorporated polychelates at the interfaces of porous activated carbon provided an optimum specific capacitance of 341.33 F g^(-1) with a device of PAA-Co7,which is at least 15 times enhancement compared to the device of pristine PAA.The PAA-Co7 device also provided energy density of 21.25 Wh kg^(-1) at a power density of 117.69 W kg^(-1).A prolonged cyclic stability of the device exhibited superior capacitive performance after 10,000 charge-discharge cycles and the maintained 90%of its initial performance.In addition,the supercapacitor with a dimension of 1.5 cm×3 cm containing PAA-Co7 successfully operated the red-blue-green(RGB)LED light.展开更多
Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslin...Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.展开更多
基金This work was supported by the Scientific Research Foundation for Youth(No.QN0404).
文摘Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.
基金The project was supported by the Shanghai Committee of Science and Technology (No. 045211024).
文摘To improve the water tree resistance of PE, linear low-density polyethylene (LLDPE) was compounded with sodium acrylate (NaAA) for in situ polymerization, in which NaAA was fbrmed through the neutralization of acrylic acid (AA) with sodium hydroxide (NaOH) before adding dicumyl peroxide (DCP) to initiate the in situ graft polymerization and homo polymerization. A series of LLDPE/NaAA compounds were investigated for their water absorption ratio (WAR) measurement, water treeing, mechanical and dielectric properties. The results strongly suggest that NaAA can improve the water tree resistance of LLDPE. In addition, the LLDPE/NaAA compounds possess satisfactory mechanical properties and dielectric properties. Characterization of LLDPE/NaAA compounds by using Fourier transform infrared spectrometry (FTIR) suggests that the neutralization and polymerization reaction could be achieved effectively. Using adequate DCP content is the key factor for controlling the polymerization of NaAA with precise conversion ratio.
文摘Acrylamide-sodium acrylate copolymer hydrogels have been obtained by radiation techniques. Two different methods have been used to introduce—COONa groups into polymer chains of the gels: (1) by partial hydrolysis of acrylamide homopolymer gel; (2) by direct copolymerization and crosslinking of acrylamide and sodium acrylate in aqueous solutions. It was found that the gels obtained in different ways had different properties, the swelling character of the gels obtained by partial hydrolysis were more sensitive to pH of swelling aqueous media, in order to explain these differences, ^(13)C-NMR techniques were used to investigate the sequence distribution of monomer units of both gels.
基金This work was supported by the National Natural Science Foundation of China (Contract No: 39870227 & 50173002).
文摘The interaction of poly(sodium sulfodecyl methacrylate) (PSSM) with cetyltrimethyl ammonium bromide (CTAB)was studied. It was found that the precipitate formed from PSSM and CTAB will be dissolved by excessive CTAB, resultingin the appearance of two maxima of the solution viscosity at the molar ratio (CTAB/-SO_3^-) of≈ 0.68 and≈1.30,respectively. The first one is related closely to the aggregation of polymer chains via CTAB molecules and the second oneshould be ascribed to the formation of the mixed micelles comprising surfactant and the polymer's hydrophobic chains. Theeffect of NaCl on the viscosity, the transmittance of the aqueous solution and the solubility of oil-soluble dye (dimethyl yellow) in the mixed system were also investigated.
基金Projects(21176264,21476265)supported by the National Natural Science Foundation of China
文摘The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
文摘The urethane acrylate(UA) was made of poly(tetramethylenc oxide), 4,4’-diphenylmethane diisocyanate, and 2-hydroxyethyl methacrylate. A series of poly(methyl methacrylate) / urethane acrylate copolymers was prepared by using a redox initiating system. The copolymers had cross linked structures and two-phase morphologies as indicated by the results of the dynamic mechanical measurement and swelling test.
基金This work has been supported by the National Science Foundation of China,the Youth Science Foundation of Academia Sinica,the China Postdoctoral Science Foundation and Polymer Physics Laboratory, Academia Sinica.
文摘A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.
文摘Poly(1,1,2,2- tetrahydroperfluorodecyl acrylate) (poly (TA-N)) was synthesized in laboratory. The resulting morphology of rapid expansion of supercritical solution (RESS) sprays of poly(TA - N) was investigated. At apre - expansion temperature of 45℃), amorphous polymer was formed. At temperature around 60 ℃ to 80 ℃ , fibers were formed. Increase of temperature increasesparticle size slightly. At temperature of 105℃ , most of particles are spheres. The RESS is an attractive process. To apply the polymers desired for coating applications in an organic solvent - free process that is economically viable , and it will have implications for pollution prevention during polymer film
文摘Well-defined nonionic hydrophilic ω-acryloyl poly(ethylene oxide) macro-monomer (PEO-A) has been prepared by living anionic polymerization of ethylene oxidewith diphenyl methyl potassium as the initiator and acryloyl chloride as the reaction termi-nating agent. The polymer was characterized by FTIR and SEC. The emulsifier-free emul-sion polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA) containingvarious concentrations of PEO-A was studied. In all cases stable emulsion coplymerizationsof MMA and BA were obtained. The stabilizing effect was found to be dependent on themolecular weight and the feed amount of the macromonomer.
基金supported by the National Natural Science Foundation of China(U20B6005)Hainan Province Science and Technology Special Fund(ZDKJ2021026)。
文摘Low dosage kinetic hydrate inhibitors(KHIs)are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil&gas production wells and transportation pipelines.In this paper,a new KHI,poly(N-vinyl caprolactam)-co-tert-butyl acrylate(PVCapco-TBA),was successfully synthesized with N-vinyl caprolactam(NVCap)and tert-butyl acrylate.The kinetic inhibition performances of PVCap-co-TBA on the formations of both structureⅠmethane hydrate and structureⅡnatural gas hydrate were investigated by measuring the onset times of hydrate formation under different conditions and compared with commercial KHIs such as PVP,PVCap and inhibex 501.The results indicated that PVCap-co-TBA outperformed these widely applied inhibitors for both structureⅠand structureⅡhydrates.At the same dosage of KHI,the maximum tolerable degree of subcooling under which the onset time of hydrate formation exceeded 24 hours for structureⅠhydrate was much lower than that for structureⅡhydrate.The inhibition strength increased with the increasing dosage of PVCap-co-TBA;The maximum tolerable degree of subcooling for the natural gas hydrate is more than10 K when the dosage was higher than 0.5%(mass)while it achieved 12 K when that dosage rose to0.75%(mass).Additionally,we found polypropylene glycol could be used as synergist at the dosage of 1.0%(mass)or so,under which the kinetic inhibition performance of PVCap-co-TBA could be improved significantly.All evaluation results demonstrated that PVCap-co-TBA was a very promising KHI and a competitive alternative to the existing commercial KHIs.
文摘In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization and its polymer have been discussed.
文摘The intrinsic viscosity [η] of poly(3,5-dimethylphenylacrylate) (35PDMPA)solutions were evaluated throughout the measurements of the flow times of toluene and polymer solutions by classical Huggins, and Kraemer’s methods using a Cannon-Ubbelohde semi-micro-dilution capillary viscometer in a Cannon thermostated water bath at 40℃ ± 0.02℃. The values of Huggins’ constant estimated ranged from 0.2 to 0.4 which were within expectations. The intrinsic viscosities and molecular weight relationship was established with the two-parameter classical models of Staudinger-Mark-Houwink-Sakurada and Stockmayer-Fixman. Conformational parameter C∞ and σ indicated 35PDMPA be semi flexible. Also, the rigidity of 35PDMPA was confirmed by Yamakawa-Fuji wormlike theory modified by Bohdanecky. The molecular parameters were estimated and compared. The results showed that 35PDMPA behaves like a semi-rigid polymer in toluene at 40℃ rather than a random coil flexible macromolecule.
文摘Epoxy resin based Unsaturated poly(ester-amide) resins (UPEAs) can be prepared by many methods but here these were prepared by reported method [1]. These UPEAs were then treated with acrylotl chloride to afford acrylated UPEAs resin (i.e. AUPEAs). Interacting blends of equal proportional AUPEAs and vinyl ester epoxy (VE) resin were prepared. APEAs and AUPEAs were characterized by elemental analysis, molecular weight determined by vapour pressure osmometer and by IR spectral study and by thermogravimetry. The curing of interacting blends was monitored on differential scanning calorimeter (DSC). Based on DSC data in situ glass reinforced composites of the resultant blends have been prepared and characterized for mechanical, electrical and chemical properties. Unreinforced blends were characterized by thermogravimetry (TGA).
基金Supported partially by Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences (No.55180219)
文摘Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films were immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS), then irradiated by Co γ-rays at 25℃. The effects of reaction 60 time,absorbed dose, dose-rate, inhibitor and monomer concentration on the grafting yield were studied. Grafting yields of both AA and SSS onto FEP, respectively, increase with irradiation dose, but some saturation will appear at high dose and monomer concentration. The grafting yield increases with reaction time and then levels off. The graft- ing of SSS onto FEP is more difficult than the grafting of AA. The analysis of grafted membranes using DSC and FT-IR have been done.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
文摘The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work。
文摘The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using polychelates,PAA-Co X(X:3,5,7,and 10)where X represents the doping fraction(w/w)of Co in PAA.All polymer metal electrolytes were showed excellent bending-stretching properties,thermal stability and electrochemical durability with an optimum ionic conductivity of 3.15×10^(-4) S cm^(-1).Hierarchically porous activated carbon and nano-sized conductive carbon were used to form carbon composite symmetrical device electrodes.The electric double-layer capacitor(EDLC)and redox reactions of Co-incorporated polychelates at the interfaces of porous activated carbon provided an optimum specific capacitance of 341.33 F g^(-1) with a device of PAA-Co7,which is at least 15 times enhancement compared to the device of pristine PAA.The PAA-Co7 device also provided energy density of 21.25 Wh kg^(-1) at a power density of 117.69 W kg^(-1).A prolonged cyclic stability of the device exhibited superior capacitive performance after 10,000 charge-discharge cycles and the maintained 90%of its initial performance.In addition,the supercapacitor with a dimension of 1.5 cm×3 cm containing PAA-Co7 successfully operated the red-blue-green(RGB)LED light.
基金This work was supported in part by the National Science Foundation of China (No. 20504015)the starting project for young teachers from the Ministry of Education, China.
文摘Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.