Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.E...Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.展开更多
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi...A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.展开更多
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ...Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.展开更多
Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(...Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.展开更多
In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during mo...In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during molding process. The effect of dried pellets, non-dried pellets, using an opened-vented hole, and using a closed-vented hole on the miscibility, morphology, thermal properties and mechanical properties of RPET/PC blends was investigated. The results indicated that no drying decreases dispersion, thermal properties, and mechanical properties of RPET/PC blends due to hydrolysis degradation of recycled-PET during the injection molding process. Using the venting system with non-dried RPET/PC blends partially improves dispersion, thermal properties and molecular weight of RPET/PC blends processed without drying, giving results that are similar to those processed with drying. Regarding the flexural properties, using the venting system without drying prevents the flexural properties from decreasing in RPET/PC blends, if the amount of RPET is less than 75 wt%. When the content of RPET is over 75 wt%, using the venting system does not eliminate the decrease in flexural properties of RPET/PC blends. When the venting system is applied to non-dried RPET, despite hydrolysis degradation of RPET not being completely eliminated, the damaging effects are nonetheless reduced compared with those samples processed without the venting system. As a result, vented barrel injection molding hardly prevents non-dried RPET/PC blends from having reduced flexural properties when the content of RPET is greater than 75 wt%.展开更多
Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morpholo...Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morphology of the final carbonaceous materials.For the introduction of oxygen,dealkylation and dehydrogenation will be promoted and the molecules can be linked more effectively.For the subsequent carbonization,the biphenyl structures caused by the deoxygenation via the elimination of CO_(2),as well as the reserved aromatic ether bonds,can facilitate the strong cross-linking,which will restrain the movement of the carbon layers and the formation of the graphitic structures.After the graphitization treatment at 2800℃,the oxidized pitch can lead to short-range ordered and long-range unordered structures,while the sample without oxidation can result in long-range ordered graphitic structures.It can be proved that a simple oxidation-carbonization treatment can transform ethylene tar into hard carbon structures.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [B...An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [Bmim]X to [Bmim]OH,amount of ionic liquid,molar ratio of water to ethylene carbonate,reaction tem-perature,pressure and reaction time,were investigated systematically. Excellent yield(>93%) and high selectivity(99.5%) of ethylene glycol were achieved. Under the optimum reaction conditions,the ionic liquid system could be reused at least five times and the selectivity of ethylene glycol remained higher than 99.5%.展开更多
Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-op...Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-oped based on a poly(ethyl acrylate)(PEA)polymer matrix with the vinylene carbonate(VC)additive(defined as PEA-VC)for high-voltage solid-state LMBs.Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity(1.57 mS/cm at 22°C),a high lithium-ion transference number(0.73),and a wide electrochemical stability window(up to 4.9 V vs.Li/Li+).The remarkable compatibil-ity of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells(800 h lifetime at a current density of 0.1 mA/cm2 at 22°C)and Li//LiNi0.8Mn0.1Co0.1O2(NMC811)full cells(with a capacity retention of 77.8%after 100 cycles at 0.2C).The improved stability is attributed to the introduction of the VC additive,which helps form a robust cathode–electrolyte interphase,effectively suppressing parasitic interface side reactions.Overall,this study highlights the role of VC addi-tives in high-voltage and solid-state LMBs,offering a general yet effective approach for addressing the interfa-cial instability issue through an additive-engineering strategy.展开更多
The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. I...The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.展开更多
The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical proces...The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.展开更多
Dimethyl carbonate was synthesized by transesterification reaction between ethylene carbonate and methanol under supercritical conditions without any catalyst. Experimental results showed that the residence time and t...Dimethyl carbonate was synthesized by transesterification reaction between ethylene carbonate and methanol under supercritical conditions without any catalyst. Experimental results showed that the residence time and the molar ratio of methanol to ethylene carbonate all can affect the conversion of ethylene carbonate. When the molar ratio of methanol to ethylene carbonate was 8:1, 81.2 % conversion can be achieved at 9.0 MPa and 250?C after 8 h.展开更多
Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graph...Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graphite intercalation compounds (AGICs) have been coming into their own in dual-ion batteries [1]. It is imperative to deepen an understanding of anion storage mechanisms in graphite electrode.展开更多
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ...In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.展开更多
Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron micros...Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron microscope (TEM). The Avrami and Hoffman-Lauritzen secondary nucleation theories were employed to analyze the effect of high CB content on crystallization kinetics of PET, providing theoretical support for the development of masterbatch with high content of functional components. The Avrami exponents,average values of n,for PET and PET/CB masterbatch are both greater than 3, which indicates three-dimensional growth of crystals. In addition,no significant evidence for regime transition of PET is found applying Hoffman-Lauritzen secondary nucleation theory,though such observations have been reported previously in the literature. Furthermore,appropriate U* value for PET is determined to be 12 800 J/mol. For PET/CB masterbatch,a transition from regime I to regime II around 225℃ is observed with appropriate U* value (12 800 J/mol) . This phenomenon is consistent with a transition point in plot of G versus Tc . The fold surface free energy σe (100. 3 mJ/m 2) of PET is much greater than that of PET/CB masterbatch (48. 3 mJ/m 2) ,which indicates heterogeneous nucleation effect of CB particles.展开更多
The concentration of acetaldehyde(AA) is the main quality index of poly(ethylene terephthalate)(PET) used in food and drink packaging.A new method for AA removal has been developed by using supercritical carbon dioxid...The concentration of acetaldehyde(AA) is the main quality index of poly(ethylene terephthalate)(PET) used in food and drink packaging.A new method for AA removal has been developed by using supercritical carbon dioxide(sc CO2) during the solid-state polycondensation of PET.The influence factors of AA removal including the temperature,pressure,reaction time and the size of pre-polymer particles are systematically studied in this work.The results indicate that it is a highly efficient way to obtain high molecular weight PET with relative low concentration of AA.Correspondingly,the polymerization degree of PET could increase from 27.9 to 85.6 while the concentration of AA reduces from 0.229 × 10^(-6) to 0.055 × 10^(-6) under the optimal operation conditions of 230 °C,8 MPa and size of 0.30–0.45 mm.Thermodynamic performance tests show the increasing extent of PET crystallinity due to the fact that the plasticization of sc CO_2 is not obvious with extended reaction time,therefore the increasing crystallinity has no significant influence on AA removal.SEM observations reveal that the effects of sc CO_(2-) induced plasticization and swelling on PET increase significantly with the decrease of prepolymer size,and the surface of PET becomes more loose and porous in favor of the AA removal.展开更多
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a...Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.展开更多
The efficient hydrogenation of CO_(2)-derived ethylene carbonate(EC)to yield methanol(MeOH)and ethylene glycol(EG)is a key process for indirect conversion of CO_(2)to MeOH.However,a high H_(2)/EC molar ratio during th...The efficient hydrogenation of CO_(2)-derived ethylene carbonate(EC)to yield methanol(MeOH)and ethylene glycol(EG)is a key process for indirect conversion of CO_(2)to MeOH.However,a high H_(2)/EC molar ratio during the hydrogenation process(usually as 180-300)is generally required to achieve good catalytic performance,resulting in high cost and energy consumption for H_(2)circulation in the promising industrial application.Here,we prepared a series of Ni-modified Cu/SiO_(2)catalysts and explored the effects of synthesis methods and Ni contents on catalytic performance under different H_(2)/EC molar ratios.The Cu/SiO_(2)catalyst with 0.2%(mass)Ni loading prepared by co-ammonia evaporation method exhibited above 99%conversion of EC,91%and 98%selectivity to MeOH and EG respectively at H_(2)/EC ratio of 60.And no significant deactivation was observed within 140 h at a lower H_(2)/EC of 40.It is demonstrated that a few of Ni addition could not only promote Cu dispersion and increase surface Cu^(+) species due to the strong interaction between Cu and Ni species,but also form uniformly-dispersed CuNi alloy species and thus enhance the adsorption and dissociation of H_(2).But the excess Ni species would aggregate and segregate to cover partial surface of Cu nanoparticles,leading to a significantly drop of catalytic performance in EC hydrogenation.These insights may provide guidance for further design of catalysts for the ester hydrogenation reactions.展开更多
Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,t...Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.展开更多
基金supported by the National Natural Science Foundation of China(52172201,51732005,51902118,and 52102249)the China Postdoctoral Science Foundation(2019M662609and 2020T130217)for financial support。
文摘Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V.
文摘A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.
基金the National High Technology Research and Development Program of China(No.2003AA321010).
文摘Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.
基金the financial support of the National Natural Science Foundation of China(No.20104005).
文摘Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.
文摘In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during molding process. The effect of dried pellets, non-dried pellets, using an opened-vented hole, and using a closed-vented hole on the miscibility, morphology, thermal properties and mechanical properties of RPET/PC blends was investigated. The results indicated that no drying decreases dispersion, thermal properties, and mechanical properties of RPET/PC blends due to hydrolysis degradation of recycled-PET during the injection molding process. Using the venting system with non-dried RPET/PC blends partially improves dispersion, thermal properties and molecular weight of RPET/PC blends processed without drying, giving results that are similar to those processed with drying. Regarding the flexural properties, using the venting system without drying prevents the flexural properties from decreasing in RPET/PC blends, if the amount of RPET is less than 75 wt%. When the content of RPET is over 75 wt%, using the venting system does not eliminate the decrease in flexural properties of RPET/PC blends. When the venting system is applied to non-dried RPET, despite hydrolysis degradation of RPET not being completely eliminated, the damaging effects are nonetheless reduced compared with those samples processed without the venting system. As a result, vented barrel injection molding hardly prevents non-dried RPET/PC blends from having reduced flexural properties when the content of RPET is greater than 75 wt%.
基金financially supported by the National Natural Science Foundation of China(22075081,52372045 and U1710252)the Fundamental Research Funds for the Central Universities(JKD01231701)+1 种基金China Postdoctoral Science Foundation(2023M731084)Shanghai Sailing Program of China(23YF1408900).
文摘Ethylene tar is a prospective precursor for preparing carbonaceous materials,which is regarded as a representative soft carbon material after carbonization.However,the introduction of oxygen can influence the morphology of the final carbonaceous materials.For the introduction of oxygen,dealkylation and dehydrogenation will be promoted and the molecules can be linked more effectively.For the subsequent carbonization,the biphenyl structures caused by the deoxygenation via the elimination of CO_(2),as well as the reserved aromatic ether bonds,can facilitate the strong cross-linking,which will restrain the movement of the carbon layers and the formation of the graphitic structures.After the graphitization treatment at 2800℃,the oxidized pitch can lead to short-range ordered and long-range unordered structures,while the sample without oxidation can result in long-range ordered graphitic structures.It can be proved that a simple oxidation-carbonization treatment can transform ethylene tar into hard carbon structures.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
基金Supported by the National High Technology Research and Development Program of China(2006AA06Z317) National Natural Science Foundation of China(20876162)+3 种基金 National Basic Research Program of China(2009CB219901) National Key Technology Research and Development Program(2008BAF33B04) National Science Fund of China(21006117) Science and Technology Project of Beijing(Y090081135)
文摘An ionic liquid system of [Bmim]X/[Bmim]OH(X Cl,BF4,and PF6,) was developed for the hydroly-sis of ethylene carbonate to ethylene glycol. The important parameters,such as the variety of ionic liquids,molar ratio of [Bmim]X to [Bmim]OH,amount of ionic liquid,molar ratio of water to ethylene carbonate,reaction tem-perature,pressure and reaction time,were investigated systematically. Excellent yield(>93%) and high selectivity(99.5%) of ethylene glycol were achieved. Under the optimum reaction conditions,the ionic liquid system could be reused at least five times and the selectivity of ethylene glycol remained higher than 99.5%.
基金supported by the startup funding of HLX and the Assistant Secretary for Energy Efficiency and Renewable Energy,Vehicle Technology Office of the U.S.Department of Energy(DOE)through the Advanced Battery Materials Research Program under contract No.DE-SC0012704.
文摘Solid polymer electrolytes(SPEs)have attracted considerable attention for solid-state lithium-metal batteries(LMBs)with high energy density and enhanced safety for future applications.In this study,an SPE was devel-oped based on a poly(ethyl acrylate)(PEA)polymer matrix with the vinylene carbonate(VC)additive(defined as PEA-VC)for high-voltage solid-state LMBs.Results show that introducing the VC additive into the PEA-based SPE leads to high lithium-ion conductivity(1.57 mS/cm at 22°C),a high lithium-ion transference number(0.73),and a wide electrochemical stability window(up to 4.9 V vs.Li/Li+).The remarkable compatibil-ity of the PEA-VC SPE with lithium metal anodes and high-voltage cathodes was demonstrated in Li//Li symmetric cells(800 h lifetime at a current density of 0.1 mA/cm2 at 22°C)and Li//LiNi0.8Mn0.1Co0.1O2(NMC811)full cells(with a capacity retention of 77.8%after 100 cycles at 0.2C).The improved stability is attributed to the introduction of the VC additive,which helps form a robust cathode–electrolyte interphase,effectively suppressing parasitic interface side reactions.Overall,this study highlights the role of VC addi-tives in high-voltage and solid-state LMBs,offering a general yet effective approach for addressing the interfa-cial instability issue through an additive-engineering strategy.
文摘The efficient synthesis of methanol and ethylene glycol via the chemoselective hydrogenation of ethylene carbonate(EC) is important for the sustainable utilization of CO_2 to produce commodity chemicals and fuels. In this work, a series of β-cyclodextrin-modified Cu/SiO_2 catalysts were prepared by ammonia evaporation method for the selective hydrogenation of EC to co-produce methanol and ethylene glycol. The structure and physicochemical properties of the catalysts were characterized in detail by N_2 physisorption, XRD, N_2O titration, H_2-TPR, TEM, and XPS/XAES. Compared with the unmodified 25 Cu/SiO_2 catalyst, the involvement of β-cyclodextrin in 5β-25 Cu/SiO_2 could remarkably increase the catalytic activity—excellent activity of 1178 mgEC g_(cat)^(–1) h^(–1) with 98.8%ethylene glycol selectivity, and 71.6% methanol selectivity could be achieved at 453 K. The remarkably improved recyclability was primarily attributed to the remaining proportion of Cu~+/(Cu^0+Cu~+). Furthermore, the DFT calculation results demonstrated that metallic Cu^0 dissociated adsorbed H_2, while Cu~+ activated the carbonyl group of EC and stabilized the intermediates. This study is a facile and efficient method to prepare highly dispersed Cu catalysts—this is also an effective and stable heterogeneous catalyst system for the sustainable synthesis of ethylene glycol and methanol via indirect chemical utilization of CO_2.
基金the National High Technology Research and Development Program of China(No 2003AA321010)
文摘The reaction between ethylene carbonate and dimethyl terephthalate was carried out for the simultaneous synthesis of dimethyl carbonate and poly(ethylene terephthalate), This reaction is an excellent chemical process that is environmentally friendly and produces no poisonous substance. The metal acetate catalysts used for this reaction are discussed in detail. Lithium acetate dihydrate was found to be a novel and efficient catalyst for this reaction. Compared with other metal acetates, lithium acetate dihydrate can attain a maximum catalytic activity at a lower concentration. When the reaction was carried out under the following conditions: the reaction temperature from 230 to 250 ℃, molar ratio of ethylene carbonate(EC) to dimethyl terephthalate(DMT) 3: 1, reaction time 3 h, and a catalyst amount of 0. 4% (molar fraction to DMT), the yield of dimethyl carbonate(DMC) was 79. 1%.
基金the National Natural Science foundation of China(No.20204002)the Natural Science Foundation of Liaoning Province(No.20031074)for financial support
文摘Dimethyl carbonate was synthesized by transesterification reaction between ethylene carbonate and methanol under supercritical conditions without any catalyst. Experimental results showed that the residence time and the molar ratio of methanol to ethylene carbonate all can affect the conversion of ethylene carbonate. When the molar ratio of methanol to ethylene carbonate was 8:1, 81.2 % conversion can be achieved at 9.0 MPa and 250?C after 8 h.
基金financially supported by the National Natural Science Foundation of China(21975251)。
文摘Graphite is a universal host material for ion intercalation. Li+-graphite intercalation compounds (GICs) have been successfully utilized as the anode material in commercial lithium-ion batteries.Similarly, anion-graphite intercalation compounds (AGICs) have been coming into their own in dual-ion batteries [1]. It is imperative to deepen an understanding of anion storage mechanisms in graphite electrode.
基金supported by the National Science and Technology Planning Project (No.2011BAC08B00)the National High Technology Research and Development Program of China (863 Program)(No.2012AA03A611)
文摘In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.
文摘Poly(ethylene terephthalate) (PET)/carbon black (CB) masterbatch was prepared by melt blending using a separate feeding technique and its homogeneous dispersion morphology was confirmed by transmission electron microscope (TEM). The Avrami and Hoffman-Lauritzen secondary nucleation theories were employed to analyze the effect of high CB content on crystallization kinetics of PET, providing theoretical support for the development of masterbatch with high content of functional components. The Avrami exponents,average values of n,for PET and PET/CB masterbatch are both greater than 3, which indicates three-dimensional growth of crystals. In addition,no significant evidence for regime transition of PET is found applying Hoffman-Lauritzen secondary nucleation theory,though such observations have been reported previously in the literature. Furthermore,appropriate U* value for PET is determined to be 12 800 J/mol. For PET/CB masterbatch,a transition from regime I to regime II around 225℃ is observed with appropriate U* value (12 800 J/mol) . This phenomenon is consistent with a transition point in plot of G versus Tc . The fold surface free energy σe (100. 3 mJ/m 2) of PET is much greater than that of PET/CB masterbatch (48. 3 mJ/m 2) ,which indicates heterogeneous nucleation effect of CB particles.
基金Supported by the National Key Research and Development Program of China(2016YFB0302702)the National Natural Science Foundation of China(21676083)+1 种基金the Shanghai Rising-Star Program(16QB140130)the 111 Project(B08021)
文摘The concentration of acetaldehyde(AA) is the main quality index of poly(ethylene terephthalate)(PET) used in food and drink packaging.A new method for AA removal has been developed by using supercritical carbon dioxide(sc CO2) during the solid-state polycondensation of PET.The influence factors of AA removal including the temperature,pressure,reaction time and the size of pre-polymer particles are systematically studied in this work.The results indicate that it is a highly efficient way to obtain high molecular weight PET with relative low concentration of AA.Correspondingly,the polymerization degree of PET could increase from 27.9 to 85.6 while the concentration of AA reduces from 0.229 × 10^(-6) to 0.055 × 10^(-6) under the optimal operation conditions of 230 °C,8 MPa and size of 0.30–0.45 mm.Thermodynamic performance tests show the increasing extent of PET crystallinity due to the fact that the plasticization of sc CO_2 is not obvious with extended reaction time,therefore the increasing crystallinity has no significant influence on AA removal.SEM observations reveal that the effects of sc CO_(2-) induced plasticization and swelling on PET increase significantly with the decrease of prepolymer size,and the surface of PET becomes more loose and porous in favor of the AA removal.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA03A611)
文摘Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect.
基金the supports from the National Natural Science Foundation of China(22022811,U21B2096 and 21938008)the National Key Research&Development Program of China(2018YFB0605803)。
文摘The efficient hydrogenation of CO_(2)-derived ethylene carbonate(EC)to yield methanol(MeOH)and ethylene glycol(EG)is a key process for indirect conversion of CO_(2)to MeOH.However,a high H_(2)/EC molar ratio during the hydrogenation process(usually as 180-300)is generally required to achieve good catalytic performance,resulting in high cost and energy consumption for H_(2)circulation in the promising industrial application.Here,we prepared a series of Ni-modified Cu/SiO_(2)catalysts and explored the effects of synthesis methods and Ni contents on catalytic performance under different H_(2)/EC molar ratios.The Cu/SiO_(2)catalyst with 0.2%(mass)Ni loading prepared by co-ammonia evaporation method exhibited above 99%conversion of EC,91%and 98%selectivity to MeOH and EG respectively at H_(2)/EC ratio of 60.And no significant deactivation was observed within 140 h at a lower H_(2)/EC of 40.It is demonstrated that a few of Ni addition could not only promote Cu dispersion and increase surface Cu^(+) species due to the strong interaction between Cu and Ni species,but also form uniformly-dispersed CuNi alloy species and thus enhance the adsorption and dissociation of H_(2).But the excess Ni species would aggregate and segregate to cover partial surface of Cu nanoparticles,leading to a significantly drop of catalytic performance in EC hydrogenation.These insights may provide guidance for further design of catalysts for the ester hydrogenation reactions.
文摘Poly(ethylene-oxide)(PEO)-based membranes have attracted much attention recently for CO2 separation because CO2 is highly soluble into PEO and shows high selectivity over other gases such as CH4 and N2.Unfortunately,those membranes are not strong enough mechanically and highly crystalline,which hinders their broader applications for separation membranes.In this review discussions are made,as much in detail as possible,on the strategies to improve gas separation performance of PEO-based membranes.Some of techniques such as synthesis of graft copolymers that contain PEO,cross-linking of polymers and blending with long chains polymers contributed significantly to improvement of membrane.Incorporation of ionic liquids/nanoparticles has also been found effective.However,surface modification of nanoparticles has been done chemically or physically to enhance their compatibility with polymer matrix.As a result of all such efforts,an excellent performance,i.e.,CO2 permeability up to 200 Barrer,CO2/N2 selectivity up to 200 and CO2/CH4 selectivity up to 70,could be achieved.Another method is to introduce functional groups into PEO-based polymers which boosted CO2 permeability up to 200 Barrer with CO2/CH4 selectivity between 40 and 50.The CO2 permeability of PEO-based membranes increases,without much change in selectivity,when the length of ethylene oxide is increased.