Poly(ethylene glycol) diacrylate/polyvinyl alcohoI(PEGDA/PVA) hydrogels were prepared from PEGDA and PVA as precurors by means of single UV radiation(UV ra.), UV radiation followed by high energy electron beam i...Poly(ethylene glycol) diacrylate/polyvinyl alcohoI(PEGDA/PVA) hydrogels were prepared from PEGDA and PVA as precurors by means of single UV radiation(UV ra.), UV radiation followed by high energy electron beam irradiation(Irra.), UV radiation followed by freeze-thawing(FT) or UV ra. and Irra. followed by FT, respectively. 2-Hydroxy-l-[4-(hydroxyethoxy)phenyl]-2-methyl-l-propanone(Irgacure 2959) was used as a photoinitiator. The effects of the various methods on the swelling and mechanical properties of the hydrogels were investigated. The results show that hydrogels made by UV ra. plus high energy electron beam irradiation followed by FT showed a higher crosslinking density and a larger tensile strength than those made by the other methods.展开更多
通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通...通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.展开更多
Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV rad...Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV radiation. The effects of different plasticizers on the mechanical properties and adhesion properties of the hydrogels were investigated. The results show that the plasticizer can improve the elongation and peeling force. The most pronotmced changes in the tensile property of the hydrogels are due to the addition of glycerol followed by PEG, the lower the plasticizer's molecular weight, the greater its effect. The maximum peeling force is 0.317 or 0.257 N with PEG or glycerol as plasticizer, respectively, and their adhesion properties are due to the formation of hydrogen bonds.展开更多
Transcatheter aortic heart valves(TAHVs) have been widely used for aortic valve replacements, with less trauma and lower clinical risk compared with traditional surgical heart valve replacements. In the present study,...Transcatheter aortic heart valves(TAHVs) have been widely used for aortic valve replacements, with less trauma and lower clinical risk compared with traditional surgical heart valve replacements. In the present study, composites of poly(ethylene glycol) diacrylate(PEGDA) hydrogels and anisotropic highshrinkage polyethylene terephthalate/polyamide6(PET-PA6) fabric(PEGDA/PET-PA6) were fabricated as artificial heart valve leaflets. Dynamic mechanical analyses(DMA) indicated that PEGDA/PET-PA6 composites possessed anisotropic mechanical properties(i.e., storage moduli ~23.30 ± 1.36 MPa parallel to the aligned fabric fibers and ~9.68 ± 0.90 MPa perpendicular to the aligned fibers at 1 Hz) that were comparable to aortic valve leaflets. The PEGDA/PET-PA6 composites with smooth surfaces were highly hydrophilic(contact angle ~41.6°± 3.8°) and had low-fouling properties without platelet adhesion,suggesting a low risk of thrombogenicity when they interacted with blood. Furthermore, transcatheter aortic heart valves were fabricated using nitinol self-expanding frames and PEGDA/PET-PA6 composites as artificial leaflets, which presented excellent hemodynamic performance with a large orifice area(1.75cm2) and low regurgitation(3.41%), thus meeting the requirements of ISO 5840-3 standard. Therefore,PEGDA/PET-PA6 composites had suitable mechanical properties, good biocompatibility, and low-fouling properties, indicating that they might be used for TAHVs in the future.展开更多
文摘Poly(ethylene glycol) diacrylate/polyvinyl alcohoI(PEGDA/PVA) hydrogels were prepared from PEGDA and PVA as precurors by means of single UV radiation(UV ra.), UV radiation followed by high energy electron beam irradiation(Irra.), UV radiation followed by freeze-thawing(FT) or UV ra. and Irra. followed by FT, respectively. 2-Hydroxy-l-[4-(hydroxyethoxy)phenyl]-2-methyl-l-propanone(Irgacure 2959) was used as a photoinitiator. The effects of the various methods on the swelling and mechanical properties of the hydrogels were investigated. The results show that hydrogels made by UV ra. plus high energy electron beam irradiation followed by FT showed a higher crosslinking density and a larger tensile strength than those made by the other methods.
文摘通过低温等离子体技术对聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸β-羟乙酯(HEMA)共聚物水凝胶生物材料进行表面改性,以骨髓基质干细胞(BMSc)为细胞模型,考察了细胞在等离子体表面改性前后的水凝胶材料的黏附和增值行为.材料的表面性能通过X射线光电子能谱、接触角和扫描电镜进行表征.研究结果表明,材料表面经氩等离子体处理后,其亲水性得到较大的改善,表面自由能由45.9 m J/m2增加到70.3 m J/m2;体外实验结果证明,BMSc在等离子体处理后材料表面培养24 h后出现明显细胞核,168 h细胞融合成片,通过等离子体处理方法有利于细胞在水凝胶材料表面的黏附和增殖.
文摘Using polyethylene glycol(PEG) or glycerol as the plasticizer, we synthesized the hydrogels from poly(ethylene glycol) diacrylate(PEGDA), polyvinylpyrrolidone(PVP) and poly(vinyl alcohol)(PVA) under UV radiation. The effects of different plasticizers on the mechanical properties and adhesion properties of the hydrogels were investigated. The results show that the plasticizer can improve the elongation and peeling force. The most pronotmced changes in the tensile property of the hydrogels are due to the addition of glycerol followed by PEG, the lower the plasticizer's molecular weight, the greater its effect. The maximum peeling force is 0.317 or 0.257 N with PEG or glycerol as plasticizer, respectively, and their adhesion properties are due to the formation of hydrogen bonds.
基金supportedby the National Natural Science Foundation of China(Nos.31670981 and 31300788)the Hundred-Talent Program from Chinese Academy of Sciences
文摘Transcatheter aortic heart valves(TAHVs) have been widely used for aortic valve replacements, with less trauma and lower clinical risk compared with traditional surgical heart valve replacements. In the present study, composites of poly(ethylene glycol) diacrylate(PEGDA) hydrogels and anisotropic highshrinkage polyethylene terephthalate/polyamide6(PET-PA6) fabric(PEGDA/PET-PA6) were fabricated as artificial heart valve leaflets. Dynamic mechanical analyses(DMA) indicated that PEGDA/PET-PA6 composites possessed anisotropic mechanical properties(i.e., storage moduli ~23.30 ± 1.36 MPa parallel to the aligned fabric fibers and ~9.68 ± 0.90 MPa perpendicular to the aligned fibers at 1 Hz) that were comparable to aortic valve leaflets. The PEGDA/PET-PA6 composites with smooth surfaces were highly hydrophilic(contact angle ~41.6°± 3.8°) and had low-fouling properties without platelet adhesion,suggesting a low risk of thrombogenicity when they interacted with blood. Furthermore, transcatheter aortic heart valves were fabricated using nitinol self-expanding frames and PEGDA/PET-PA6 composites as artificial leaflets, which presented excellent hemodynamic performance with a large orifice area(1.75cm2) and low regurgitation(3.41%), thus meeting the requirements of ISO 5840-3 standard. Therefore,PEGDA/PET-PA6 composites had suitable mechanical properties, good biocompatibility, and low-fouling properties, indicating that they might be used for TAHVs in the future.