A new oxadiazole-functionalized polyacrylonitrile fiber(PANAOF)was successfully fabricated by immobilizing the organic molecule 2-chloromethyl-5-phenyl-1,3,4-oxadiazole on aminated fiber(PANAF).The fibers were charact...A new oxadiazole-functionalized polyacrylonitrile fiber(PANAOF)was successfully fabricated by immobilizing the organic molecule 2-chloromethyl-5-phenyl-1,3,4-oxadiazole on aminated fiber(PANAF).The fibers were characterized completely by Fourier-transform infrared spectroscopy,elemental analysis,X-ray diffraction,and X-ray photoelectron spectroscopy techniques.Compared with PANAF,PANAOF showed a higher adsorption capability for Hg^2+ions in aqueous solutions.The functionalized fiber PANAOF exhibited a highly selective adsorption for Hg^2+when coexisting with other metal ions viz.Pb^2+,Cd^2+,Cu^2+,Zn^2+,Ni^2+,Co^2+,Cr^3+,Ca^2+,and Mg^2+.The PANAOF presented the best adsorption capacity for Hg^2+at pH 5.Moreover,the adsorption experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm.Notably,the PANAOF almost retained its original adsorption capacity(112 mg/g)after five cycles,indicating its excellent reusability in practical applications.展开更多
The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fib...The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fiber in the process of isothermal thermal stabilization is considered by the methods of dilatometry and X-ray diffraction analysis. It is shown that preliminary short-term heat treatment at a lower temperature affects the process of structural transformations of the polyacrylonitrile fiber material and the formation of a new highly dispersed phase of the thermally stabilized fiber.展开更多
In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon r...In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon ratio are two parameters to tune the porosity and surface chemical properties of sorbents. The as-obtained sorbents were carefully characterized.Special attention was paid concerning the change of sorbents’ morphology with respect to synthesis conditions. Under the activation temperatures of this study, the sorbents can still retain their fibrous structure when the KOH/carbon mass ratio is 1. Further increasing the KOH amount will destroy the original morphology of polyacrylonitrile fiber. CO_(2)adsorption performance tests show that a sorbent retaining the fibrous shape possesses the highest CO_(2)uptake of 3.95 mmol/g at 25℃and 1 bar. Comprehensive investigation found that the mutual effect of narrow microporosity and doped N content govern the CO_(2)adsorption capacity of these adsorbents. Furthermore, these polyacrylonitrile fiber-derived carbons present multiple outstanding CO_(2)capture properties such as excellent recyclability, high CO_(2)/N_(2)selectivity, fast adsorption kinetics, suitable heat of adsorption, and good dynamic adsorption capacity. Hence, nitrogen-doped porous carbons with fibrous structure are promising in CO_(2)capture.展开更多
The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The mul...The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The multiple linear regression (MLR) methodwas employed todevelop the quantitative structure property relationship (QSPR) model equations for thedecoloration and mineralization of azodyes. Moreover, the predictive ability of the QSPR model equationswas assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride inwater on QSPR model equationswere also investigated. The results indicated that the heterogeneous photo-Fentondegradation of the azodyeswithdifferent structureswas conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for thedyedecoloration and mineralizationwere successfullydeveloped using MLR technique. MW/S (molecularweightdivided by the number of sulphonate groups) and N N=N (the number of azo linkage) are considered as the most importantdetermining factor for thedyedegradation and mineralization, and there is a significant negative correlation between MW/S or N N=N anddegradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloridedid not alter the nature of the QSPR model equations.展开更多
A proline functionalized fiber catalyst was employed for aldol reactions in water. In the presence of the fiber catalyst, the aldol reactions proceeded smoothly at 40 ℃ and the products were obtained in excellent yie...A proline functionalized fiber catalyst was employed for aldol reactions in water. In the presence of the fiber catalyst, the aldol reactions proceeded smoothly at 40 ℃ and the products were obtained in excellent yields which were higher than those obtained for the reactions catalyzed by L-proline or trans-4-hydroxy-L-proline. This newly developed fiber catalyst is applicable to the reactions of a wide range of aromatic aldehydes and exhibits ex- cellent reusability(up to 6 times) without any additional treatment.展开更多
A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbo...A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.展开更多
Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers ...Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.展开更多
The void structure of polyacrylonitrile(PAN)fibers was investigated using ultra-small angle X-ray scat-tering(USAXS)and small angle X-ray scattering(SAXS).A quantitative method was developed to analyze connected USAXS...The void structure of polyacrylonitrile(PAN)fibers was investigated using ultra-small angle X-ray scat-tering(USAXS)and small angle X-ray scattering(SAXS).A quantitative method was developed to analyze connected USAXS/SAXS data and thus determine the void parameters of PAN fibers.The results showed that voids affected the mechanical performance of PAN fibers and were present throughout the entire wet-spinning process.When the abso-lute quantity and size of voids decreased,the tensile strength and modulus of PAN fibers increased.The void para-meters were optimized by controlling the production process,and thus the tensile strength and modulus of PAN fibers were increased.The method for analyzing the void structure developed in this study is useful for analyzing voids over with larger size range,as well as the effect of the void structure on the mechanical performance of fibers.展开更多
To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Four...To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.展开更多
The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for ...The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for the artificial muscle. Furthermore, here we provide an important experimental way to study gel muscles.展开更多
Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning e...Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21777111 and 21572156)
文摘A new oxadiazole-functionalized polyacrylonitrile fiber(PANAOF)was successfully fabricated by immobilizing the organic molecule 2-chloromethyl-5-phenyl-1,3,4-oxadiazole on aminated fiber(PANAF).The fibers were characterized completely by Fourier-transform infrared spectroscopy,elemental analysis,X-ray diffraction,and X-ray photoelectron spectroscopy techniques.Compared with PANAF,PANAOF showed a higher adsorption capability for Hg^2+ions in aqueous solutions.The functionalized fiber PANAOF exhibited a highly selective adsorption for Hg^2+when coexisting with other metal ions viz.Pb^2+,Cd^2+,Cu^2+,Zn^2+,Ni^2+,Co^2+,Cr^3+,Ca^2+,and Mg^2+.The PANAOF presented the best adsorption capacity for Hg^2+at pH 5.Moreover,the adsorption experimental data fit well with the pseudo-second-order kinetic model and Langmuir isotherm.Notably,the PANAOF almost retained its original adsorption capacity(112 mg/g)after five cycles,indicating its excellent reusability in practical applications.
文摘The influence of two-stage isothermal treatment on the change in the linear dimensions of the fiber, the average sizes of the coherent scattering regions, the texture and phase composition of the polyacrylonitrile fiber in the process of isothermal thermal stabilization is considered by the methods of dilatometry and X-ray diffraction analysis. It is shown that preliminary short-term heat treatment at a lower temperature affects the process of structural transformations of the polyacrylonitrile fiber material and the formation of a new highly dispersed phase of the thermally stabilized fiber.
基金supported by Zhejiang Provincial Natural Science Foundation(No. LY21B070005)National Undergraduate Training Program for Innovation and Entrepreneurship of China(Nos. 202110345015 and 202110345016)Self designed scientific research project of Zhejiang Normal University(No. 2021ZS06)。
文摘In this report, nitrogen-doped porous carbons were synthesized from polyacrylonitrile fiber by a facile two-step synthesis process i.e. carbonization followed by KOH activation. Activation temperature and KOH/carbon ratio are two parameters to tune the porosity and surface chemical properties of sorbents. The as-obtained sorbents were carefully characterized.Special attention was paid concerning the change of sorbents’ morphology with respect to synthesis conditions. Under the activation temperatures of this study, the sorbents can still retain their fibrous structure when the KOH/carbon mass ratio is 1. Further increasing the KOH amount will destroy the original morphology of polyacrylonitrile fiber. CO_(2)adsorption performance tests show that a sorbent retaining the fibrous shape possesses the highest CO_(2)uptake of 3.95 mmol/g at 25℃and 1 bar. Comprehensive investigation found that the mutual effect of narrow microporosity and doped N content govern the CO_(2)adsorption capacity of these adsorbents. Furthermore, these polyacrylonitrile fiber-derived carbons present multiple outstanding CO_(2)capture properties such as excellent recyclability, high CO_(2)/N_(2)selectivity, fast adsorption kinetics, suitable heat of adsorption, and good dynamic adsorption capacity. Hence, nitrogen-doped porous carbons with fibrous structure are promising in CO_(2)capture.
基金supported by the Research Program of Application Foundation and Advanced Technology from the Tianjin Municipal Science and Technology Committee(No.11JCZDJ24600)the Natural Science Foundationof China(No.20773093)
文摘The amidoximated polyacrylonitrile (PAN) fiber Fe complexeswere prepared and used as the heterogeneous Fenton catalysts for thedegradation of28 anionicwater soluble azodyes inwater under visible irradiation. The multiple linear regression (MLR) methodwas employed todevelop the quantitative structure property relationship (QSPR) model equations for thedecoloration and mineralization of azodyes. Moreover, the predictive ability of the QSPR model equationswas assessed using Leave-one-out (LOO) and cross-validation (CV) methods. Additionally, the effect of Fe content of catalyst and the sodium chloride inwater on QSPR model equationswere also investigated. The results indicated that the heterogeneous photo-Fentondegradation of the azodyeswithdifferent structureswas conducted in the presence of the amidoximated PAN fiber Fe complex. The QSPR model equations for thedyedecoloration and mineralizationwere successfullydeveloped using MLR technique. MW/S (molecularweightdivided by the number of sulphonate groups) and N N=N (the number of azo linkage) are considered as the most importantdetermining factor for thedyedegradation and mineralization, and there is a significant negative correlation between MW/S or N N=N anddegradation percentage or total organic carbon (TOC) removal. Moreover, LOO and CV analysis suggested that the obtained QSPR model equations have the better prediction ability. The variation in Fe content of catalyst and the addition of sodium chloridedid not alter the nature of the QSPR model equations.
基金Supported by the National Natural Science Foundation of China(No.20834002).
文摘A proline functionalized fiber catalyst was employed for aldol reactions in water. In the presence of the fiber catalyst, the aldol reactions proceeded smoothly at 40 ℃ and the products were obtained in excellent yields which were higher than those obtained for the reactions catalyzed by L-proline or trans-4-hydroxy-L-proline. This newly developed fiber catalyst is applicable to the reactions of a wide range of aromatic aldehydes and exhibits ex- cellent reusability(up to 6 times) without any additional treatment.
基金Project(2006CB600903) supported by the National Basic Research Program of China
文摘A novel carbon fiber pretreatment was proposed.Polyacrylonitrile(PAN)-based carbon fibers were first anodized in H3PO4 electrolyte to achieve an active surface,and then coated with Mo-B catalysts by immersed the carbon fibers in a uniformly dispersed Mo-B sol.The as-treated carbon fibers were then graphitized at 2 400 ℃ for 2 h.The structural changes were characterized by X-ray diffractometry(XRD),Raman spectroscopy,scanning electron microscopy(SEM) and high-resolution transmission electronic microscopy(HRTEM).The results show that much better graphitization can be achieved in the presence of Mo-B,with an interlayer spacing(d002) of 0.335 8 nm and a crystalline size(Lc) of 28 nm.
基金supported by the National Natural Science Foundation of China under grant No.59783002by the Natural Science Foundation of Henan under grant Nos.200510465008 and 0523021200.
文摘Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.
文摘The void structure of polyacrylonitrile(PAN)fibers was investigated using ultra-small angle X-ray scat-tering(USAXS)and small angle X-ray scattering(SAXS).A quantitative method was developed to analyze connected USAXS/SAXS data and thus determine the void parameters of PAN fibers.The results showed that voids affected the mechanical performance of PAN fibers and were present throughout the entire wet-spinning process.When the abso-lute quantity and size of voids decreased,the tensile strength and modulus of PAN fibers increased.The void para-meters were optimized by controlling the production process,and thus the tensile strength and modulus of PAN fibers were increased.The method for analyzing the void structure developed in this study is useful for analyzing voids over with larger size range,as well as the effect of the void structure on the mechanical performance of fibers.
文摘To find out the high-quality polyacrylonitrile (PAN) fibers, some differences are sought by comparing domestic PAN fibers with the foreign ones. X-ray diffractometer (XRD), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectrometer, elemental analyzer, tensile-testing machine and high-temperature differential scanning calorimeter (DSC) are used to characterize the individual microstructure, chemical structure, elemental content, mechanical properties and thermal properties. It is found that high-quality PAN fibers have high density, lower titre, higher or adequate tensile strength, and they also have better conglomeration structure, smaller crystal dimension with dispersive distribution, less microvoids and flaws.
文摘The dynamic property of polyacrylonitrile (PAN) muscles was tested. The test results can help us to master PAN muscles' mechanical and chemical behaviors, which are indispensable for us to build dynamic model for the artificial muscle. Furthermore, here we provide an important experimental way to study gel muscles.
基金the National Natural Science Foundatlon of China under grant No.50172004,50273002 ,50333070.
文摘Structural changes in carbon fibers at each stage of, especially, preoxidation process are well known to play a great role in achieving the ultimate product quality. Differential scanning calorimetry (DSC), scanning electron microscope (SEM), density method and optical microscope were used to characterize the preoxidation extent. A conventional approach, e.g., density aim, to evaluate the extent of preoxidation is not very exact. A DSC curve of a PAN precursor only can provide general information, major in the temperature regime of preoxidation reaction. However, the evaluation of a preoxidation extent, especially from conventional preoxidation temperature with a great span regime of 200~400癈, is put forward in this paper, in which the evolution of core/shell morphological structure is a kind of straightforward evidence.