A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO...A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.展开更多
Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a la...Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.展开更多
Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use ...Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).展开更多
Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an init...Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.展开更多
Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved sur...Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.展开更多
Oxygen and carbon behaviors and minority-carrier lifetimes in multi-crystalline silicon (mc-Si) used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~ 1150℃ in N2 and O2 ambien...Oxygen and carbon behaviors and minority-carrier lifetimes in multi-crystalline silicon (mc-Si) used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~ 1150℃ in N2 and O2 ambient. For comparison, the annealing of CZ silicon with nearly the same oxygen and carbon concentrations is also carried out under the same conditions. The results reveal that the oxygen and carbon concentrations of mc-Si and CZ-Si have a lesser decrease,which means oxygen precipitates are not generated,and grain boundaries in mc-Si do not affect carbon behavior. Bulk lifetime of mc-Si increases in N2 and O2 ambient at 850,950,and 1150℃ ,and the lifetime of mc-Si wafers annealed in 02 are higher than those annealed in N2, which shows that a lot of impurities in mc-Si at high temperature annealing diffuse to grain boundaries,greatly reducing recombination centers. Interstitial Si atoms filling vacancies or recombination centers increases lifetime.展开更多
An optimized condition for defect passivation by the hot-wire technique was established. Effects of hydrogenation for polycrystalline SiGe (poly-Si1-xGex ) thin films were estimated by investigating the dark conduct...An optimized condition for defect passivation by the hot-wire technique was established. Effects of hydrogenation for polycrystalline SiGe (poly-Si1-xGex ) thin films were estimated by investigating the dark conductivity and activation energy that derive from the conductivity as a function of the temperature. The results show that this technique can effectively reduce defects present in poly-Si1-xGex films. By optimizing the substrate and filament temperatures,the treatment can be accomplished in a short time of 20-30min, which is considerably shorter than other hydrogenation techniques.展开更多
Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sint...Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.展开更多
The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in th...The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA.展开更多
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond...In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three c...This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.展开更多
Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure ...Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure the TRS accurately for optimizing the interface and improving the service performance of PDC.In this paper,the TRS in 1913 flat-interface PDC was measured using improved stress-release method(ISRM). The TRS on the surface of polycrystalline diamond(PCD) table was obtained,which can be used to calculate the radial thermal residual stress(RTRS) at the interface of PCD table via a refutation process.The obtained results show that there are compressive residual stress at the PCD table interface and in the most region of PCD table surface.The exception occurs near the outer diameter of the PCD table,where the PDC begins to bend and put the PCD table surface into a tension state,an undesirable state for a brittle material.The ISRM has covered the shortage existing in traditional stress-release method,in which only finite points on the surface of PCD table can be tested for one specimen and one time.Simple as the experimental procedures are,the test results are also very accurate and reliable.This method provides the theoretical and experimental basis for testing TRS of PDC accurately.展开更多
In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of st...In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of state(EOS)for HDC can deviate from that for single-crystal diamond,which could be a concern for ICF designs,but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility.Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm^(3) at pressures of 17–26 Mbar.Combined with experimental data reported for nanocrystalline diamond(NCD),a stiffer compressibility of NCD due to lower initial density is confirmed.Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases.Also,the effect of temperature on the Gruneisen parameter,which is usually neglected,might need to be considered for NCD under these conditions.The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS.展开更多
A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and...A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron.It is proved that for proportional loading,present results are identical with the classical flow theory of plasticity. For nonproportional loading,the macro slip theory shows good predicting ability.The calculated results are in good agreement with the experimental data.展开更多
The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (...The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann-Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann-Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data.展开更多
Based on the microstructure-based constitutive model established in Part Ⅰ,a detailed numerical investigation on the role of each microstructure pa- rameter in the kinematical and kinetic evolution of polycrystalline...Based on the microstructure-based constitutive model established in Part Ⅰ,a detailed numerical investigation on the role of each microstructure pa- rameter in the kinematical and kinetic evolution of polycrystalline SMA under ax- isymmetrical tension loading is performed.Some macroscopic constitutive features of stress-induced martensite transformation are discussed.展开更多
The differential thermal expansion of the polycrystalline diamond layer and the tungsten carbide substrate results in large residual stresses as PDC cutters cooling after sintering.The residual stresses on the top sur...The differential thermal expansion of the polycrystalline diamond layer and the tungsten carbide substrate results in large residual stresses as PDC cutters cooling after sintering.The residual stresses on the top surface of the diamond layer of PDC were measured at five points along the radial direction of PDC using X-ray Diffraction Residual Stress Instrument,thus the stresses and their radial distribution were obtained.The results show that the stresses on the diamond surface are compressive,the biggest stress appears at the central point(about 1200 MPa),and that from the center to the edge of PDC,the magnitude of the stress decreases. A finite element analysis(FEA) was made to check the validity of the testing results.The FEA modeling results were found to correlate well with the measured values.Factors leading to the deviation between XRD experimental measurements and the calculations of residual stress by FEA were also analyzed.展开更多
With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase compos...With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.展开更多
Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesi...Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.展开更多
基金the National Research Foundation of Korea(Nos.2018R1A5A7023490 and 2022R1A2C1003003)。
文摘A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels.
基金supported in part by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2023ME073)the National Natural Science Foundation of China (Grant No.51805304)+1 种基金the Education Department of Shandong Province,China (Grant No.2022KJ130)Qilu University of Technology (Shandong Academy of Sciences),China (Grant Nos.2023PY009,2021JC02008 and 2022GH005)。
文摘Quantitative relationship between nanosecond pulsed laser parameters and the characteristics of laser-generated ultrasonic waves in polycrystalline materials was evaluated.The high energy of the pulsed laser with a large irradiation spot simultaneously generated ultrasonic longitudinal and shear waves at the epicenter under the slight ablation regime.An optimized denoising technique based on wavelet thresholding and variational mode decomposition was applied to reduce noise in shear waves with a low signal-to-noise ratio.An approach for characterizing grain size was proposed using spectral central frequency ratio(SCFR)based on time-frequency analysis.The results demonstrate that the generation regime of ultrasonic waves is not solely determined by the laser power density;even at high power densities,a high energy with a large spot can generate an ultrasonic waveform dominated by the thermoelastic effect.This is ascribed to the intensification of the thermoelastic effect with the proportional increase in laser irradiation spot area for a given laser power density.Furthermore,both longitudinal and shear wave SCFRs are linearly related to grain size in polycrystalline materials;however,the shear wave SCFR is more sensitive to finer-grained materials.This study holds great significance for evaluating metal material properties using laser ultrasound.
基金National Natural Science Foundation of China(U19B2003,21706177,21975174)Foundation Supported by China Petroleum&Chemical Corporation(121014-2)。
文摘Synthesis of ZSM-5 zeolite typically utilizes small molecule polyamines or quaternary ammonium salts as organic structure guiding agent(OSDA).By contrast,the OSDA-free hydrothermal synthesis system eliminates the use of organic templates and the subsequent calcination procedure.This not only reduces the cost of synthesis,but also prevents environmental pollution from the combustion of organic templates,representing an eco-friendly approach.Despite this,literature suggests that even so-called template-free synthesis systems often involve trace amount of organic substances like alcohol.In the present work,a calcined commercial ZSM-5 zeolite was served as seed,with sodium aluminate as aluminum source and silica sol as silicon source,ensuring an entirely template-free synthesis system.Polycrystalline ZSM-5 aggregates consisted of rod-like nanocrystals were successfully prepared in the completely OSDA-free system.Effects of the Si/Al ratio in ZSM-5 seed,dosage and crystallization conditions such as crystallization temperature and crystallization time on ZSM-5 synthesis were investigated.The results show that a highly crystallinity ZSM-5 aggregate consisting of primary nano-sized crystals less than 100 nm is produced from a gel precursor with 5.6%(in mass)seed after hydrothermal treatment for 48 h.Furthermore,the Si/Al ratio in ZSM-5 seed has little effect on the topological structure and pore structure of the synthesized samples.However,the seeds with a low Si/Al ratio facilitate faster crystallization of zeolite and enhance the acidity,especially the strong acid centers,of the catalyst.The catalytic performance of the synthesized polycrystalline ZSM-5 was evaluated during dehydration of methanol and compared with a commercial reference ZSM-5r.The results exhibit that as compared with the reference catalyst,the fabricated sample has a longer catalytic lifetime(16 h vs 8 h)attributed to its hierarchical pores derived from the loosely packed primary nanoparticles.Additionally,the prepared polycrystalline catalyst also exhibits a higher aromatics selectivity(28.1%-29.8%vs 26.5%).
基金supported by the National Natural Science Foundation of China(Grant Nos.12304033,12072328,and 11991073).
文摘Phase transition of polycrystalline iron compressed along the Hugoniot is studied by combining laser-driven shock with in situ x-ray diffraction technique.It is suggested that polycrystalline iron changes from an initial body-centered cubic structure to a hexagonal close-packed structure with increasing pressure(i.e.,a phase transition fromαtoε).The relationship between density and pressure for polycrystalline iron obtained from the present experiments is found to be in good agreement with the gas-gun Hugoniot data.Our results show that experiments with samples at lower temperatures under static loading,such as in a diamond anvil cell,lead to higher densities measured than those found under dynamic loading.This means that extrapolating results of static experiments may not predict the dynamic responses of materials accurately.In addition,neither the face-centered cubic structure seen in previous molecular-dynamics simulations or twophase coexistence are found within our experimental pressure range.
基金National Natural Science Foundation of China(Nos.52175430,51935008 and 52105478)China National Postdoctoral Program for Innovative Talents(BX20200234)Open Fund of Tianjin Key Laboratory of Equipment Design and Manufacturing Technology(EDMT)for the support of this work。
文摘Polycrystalline materials are extensively employed in industry.Its surface roughness significantly affects the working performance.Material defects,particularly grain boundaries,have a great impact on the achieved surface roughness of polycrystalline materials.However,it is difficult to establish a purely theoretical model for surface roughness with consideration of the grain boundary effect using conventional analytical methods.In this work,a theoretical and deep learning hybrid model for predicting the surface roughness of diamond-turned polycrystalline materials is proposed.The kinematic–dynamic roughness component in relation to the tool profile duplication effect,work material plastic side flow,relative vibration between the diamond tool and workpiece,etc,is theoretically calculated.The material-defect roughness component is modeled with a cascade forward neural network.In the neural network,the ratio of maximum undeformed chip thickness to cutting edge radius RT S,work material properties(misorientation angle θ_(g) and grain size d_(g)),and spindle rotation speed n s are configured as input variables.The material-defect roughness component is set as the output variable.To validate the developed model,polycrystalline copper with a gradient distribution of grains prepared by friction stir processing is machined with various processing parameters and different diamond tools.Compared with the previously developed model,obvious improvement in the prediction accuracy is observed with this hybrid prediction model.Based on this model,the influences of different factors on the surface roughness of polycrystalline materials are discussed.The influencing mechanism of the misorientation angle and grain size is quantitatively analyzed.Two fracture modes,including transcrystalline and intercrystalline fractures at different RTS values,are observed.Meanwhile,optimal processing parameters are obtained with a simulated annealing algorithm.Cutting experiments are performed with the optimal parameters,and a flat surface finish with Sa 1.314 nm is finally achieved.The developed model and corresponding new findings in this work are beneficial for accurately predicting the surface roughness of polycrystalline materials and understanding the impacting mechanism of material defects in diamond turning.
文摘Oxygen and carbon behaviors and minority-carrier lifetimes in multi-crystalline silicon (mc-Si) used for solar cells are investigated by FTIR and QSSPCD before and after annealing at 750~ 1150℃ in N2 and O2 ambient. For comparison, the annealing of CZ silicon with nearly the same oxygen and carbon concentrations is also carried out under the same conditions. The results reveal that the oxygen and carbon concentrations of mc-Si and CZ-Si have a lesser decrease,which means oxygen precipitates are not generated,and grain boundaries in mc-Si do not affect carbon behavior. Bulk lifetime of mc-Si increases in N2 and O2 ambient at 850,950,and 1150℃ ,and the lifetime of mc-Si wafers annealed in 02 are higher than those annealed in N2, which shows that a lot of impurities in mc-Si at high temperature annealing diffuse to grain boundaries,greatly reducing recombination centers. Interstitial Si atoms filling vacancies or recombination centers increases lifetime.
文摘An optimized condition for defect passivation by the hot-wire technique was established. Effects of hydrogenation for polycrystalline SiGe (poly-Si1-xGex ) thin films were estimated by investigating the dark conductivity and activation energy that derive from the conductivity as a function of the temperature. The results show that this technique can effectively reduce defects present in poly-Si1-xGex films. By optimizing the substrate and filament temperatures,the treatment can be accomplished in a short time of 20-30min, which is considerably shorter than other hydrogenation techniques.
基金Project(20070533113)supported by the Doctoral Foundation of Ministry of Education of China
文摘Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.
基金The project supported by the Research Grant Committee(RGC)of Hong Kong SARthe National Natural Science Foundation of China and the Provincial Natural Foundation of Jiangxi Province of China
文摘The effects of microstructure and its evolution on the macroscopic superelastic stress-strain response of polycrystalline Shape Memory Alloy(SMA)are studied by a microstructure-based constitutive model developed in this paper.The model is established on the following basis:(1)the transformation conditions of the unconstrained single crystal SMA microdomain(to be distinguished from the bulk single crystal),which serve as the local criterion for the derivation of overall transfor- mation yield conditions of the polycrystal;(2)the micro-to macro-transition scheme by which the connection between the polycrystal aggregates and the single crystal microdomain is established and the macroscopic transformation conditions of the polycrystal SMA are derived;(3)the quantitative incorporation of three microstruc- ture factors(i.e.,nucleation,growth and orientation distribution of martensite)into the modeling.These microstructural factors are intrinsic of specific polycrystal SMA systems and the role of each factor in the macroscopic constitutive response is quan- titatively modeled.It is demonstrated that the interplay of these factors will result in different macroscopic transformation kinematics and kinetics which are responsible for the observed macroscopic stress-strain hardening or softening response,the latter will lead to the localization and propagation of transformation bands in TiNi SMA.
文摘In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金Supported by the Natural Science Foundation of Shandong Province of China (ZR2009BM011) the Doctor Foundation of Shandong Province of China (BS2010NJ005)
文摘This paper presents the numerical investigation of the effects of momentum, thermal and species boundary layers on the characteristics of polycrystalline silicon deposition by comparing the deposition rates in three chemical vapor deposition (CVD) reactors. A two-dimensional model for the gas flow, heat transfer, and mass transfer was coupled to the gas-phase reaction and surface reaction mechanism for the deposition of polycrystalline silicon from trichlorosilane (TCS)-hydrogen system. The model was verified by comparing the simulated growth rate with the experimental and numerical data in the open literature. Computed results in the reactors indicate that the deposition characteristics are closely related to the momentum, thermal and mass boundary layer thickness. To yield higher deposition rate, there should be higher concentration of TCS gas on the substrate, and there should also be thinner boundary layer of HCl gas so that HCl gas could be pushed away from the surface of the substrate immediately.
基金supported by the Natural Science of Hunan(06JJ4062)
文摘Practical experiences gained in the past several years show that the thermal residual stress(TRS) is a main cause leading polycrystalline diamond compacts(PDC) to premature failure.It is the very important to measure the TRS accurately for optimizing the interface and improving the service performance of PDC.In this paper,the TRS in 1913 flat-interface PDC was measured using improved stress-release method(ISRM). The TRS on the surface of polycrystalline diamond(PCD) table was obtained,which can be used to calculate the radial thermal residual stress(RTRS) at the interface of PCD table via a refutation process.The obtained results show that there are compressive residual stress at the PCD table interface and in the most region of PCD table surface.The exception occurs near the outer diameter of the PCD table,where the PDC begins to bend and put the PCD table surface into a tension state,an undesirable state for a brittle material.The ISRM has covered the shortage existing in traditional stress-release method,in which only finite points on the surface of PCD table can be tested for one specimen and one time.Simple as the experimental procedures are,the test results are also very accurate and reliable.This method provides the theoretical and experimental basis for testing TRS of PDC accurately.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0403201)the Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.11805183,12074351,and 11704351).
文摘In inertial confinement fusion(ICF),polycrystalline diamond-referred to as high density carbon(HDC)-has become a promising ablator candidate.However,with smaller grain size and lower initial density,the equation of state(EOS)for HDC can deviate from that for single-crystal diamond,which could be a concern for ICF designs,but current experimental EOS studies for HDC are far from sufficient to clarify how initial density affects target compressibility.Presented here are measurements of the Hugoniot for HDC with an initial density of 3.23 g/cm^(3) at pressures of 17–26 Mbar.Combined with experimental data reported for nanocrystalline diamond(NCD),a stiffer compressibility of NCD due to lower initial density is confirmed.Two porous models are used for comparison and seem to offer better agreement compared with SESAME databases.Also,the effect of temperature on the Gruneisen parameter,which is usually neglected,might need to be considered for NCD under these conditions.The present data offer important support for EOS studies relevant to ICF and constrain the construction of wide-range EOS.
基金The project supported by Chinese Academy of Sciences
文摘A macro slip theory is presented in this paper.Four independent slip systems are proposed for polycrystalline solids.Each slip system consists of a slip plane which lies on a face of the octahedron in stress space and a slip direction which is coincident with shear stress acting on the same face of the octahedron.It is proved that for proportional loading,present results are identical with the classical flow theory of plasticity. For nonproportional loading,the macro slip theory shows good predicting ability.The calculated results are in good agreement with the experimental data.
基金supported by the National Natural Science Foundation of China(Grant Nos 50676046 and 50730006)
文摘The in-plane electrical and thermal conductivities of several polycrystalline platinum and gold nanofilms with different thicknesses are measured in a temperature range between the boiling point of liquid nitrogen (77K) and room temperature by using the direct current heating method. The result shows that both the electrical and thermal conductivities of the nanofilms reduce greatly compared with their corresponding bulk values. However, the electrical conductivity drop is considerably greater than the thermal conductivity drop, which indicates that the influence of the internal grain boundary on heat transport is different from that of charge transport, hence leading to the violation of the Wiedemann-Franz law. We build an electron relaxation model based on Matthiessen's rule to analyse the thermal conductivity and employ the Mayadas & Shatzkes theory to analyse the electrical conductivity. Moreover, a modified Wiedemann-Franz law is provided in this paper, the obtained results from which are in good agreement with the experimental data.
基金The subject supported by the Research Grant Committee(RGC)of Hong Kong SARthe National Natural Science Foundation of China and the Provincial Natural Science Foundation of Jiangxi Province of China
文摘Based on the microstructure-based constitutive model established in Part Ⅰ,a detailed numerical investigation on the role of each microstructure pa- rameter in the kinematical and kinetic evolution of polycrystalline SMA under ax- isymmetrical tension loading is performed.Some macroscopic constitutive features of stress-induced martensite transformation are discussed.
文摘The differential thermal expansion of the polycrystalline diamond layer and the tungsten carbide substrate results in large residual stresses as PDC cutters cooling after sintering.The residual stresses on the top surface of the diamond layer of PDC were measured at five points along the radial direction of PDC using X-ray Diffraction Residual Stress Instrument,thus the stresses and their radial distribution were obtained.The results show that the stresses on the diamond surface are compressive,the biggest stress appears at the central point(about 1200 MPa),and that from the center to the edge of PDC,the magnitude of the stress decreases. A finite element analysis(FEA) was made to check the validity of the testing results.The FEA modeling results were found to correlate well with the measured values.Factors leading to the deviation between XRD experimental measurements and the calculations of residual stress by FEA were also analyzed.
基金the financial support from the National Natural Science Foundation of China (No. 21266022, No. 21466022)the National High Technology Research and Development Program 863 (2014AA022002, 2012AA101800-03, 2012AA021205-6, 2012AA021704)+1 种基金the Key Programs of the National Laboratory (No. SKLFZZB-201312)the International Science & Technology Cooperation Program of China (2014DFA61040)
文摘With the help of the ceramic foam research efforts and preparation techniques, the ZrO2 polycrystalline ceramic foam catalyst was synthesized, and its characteristics, including the crystal structure, the phase composition, the acid–base properties, and the microstructure, were analyzed by XRD, SEM, Py-IR, and BET techniques. The performance of the ZrO2 polycrystalline ceramic foam catalyst in a tubular reactor was investigated via biodiesel synthesis using S. wilsoniana oil and methanol. The effects of reaction conditions(i.e., reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil) on transesterification efficiency were investigated, and the reaction conditions were optimized using RSM. The optimum reaction temperature, reaction pressure, and volume ratio of methanol to S. wilsoniana oil were determined to be 290 ℃, 10 MPa, and 4:1, respectively. Under this condition, the FAME content in the product oil reached 98.38%. The performance of the ZrO2 polycrystalline ceramic foam catalyst synthesized in this work for biodiesel synthesis from S. wilsoniana oil with a moisture content of 7.1% and an acid value of 130.697 mg KOH/g was examined, and the FAME content in the product oil was found to be 93% and 97.67%, respectively. The FAME content in the product oil exceeded 97% after five consecutive cycles(12 h per cycle of use) of the catalyst. The proposed catalyst represents a new type of solid catalyst with excellent acid resistance, water resistance, esterification efficiency, and catalytic stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572049,51562005,and 51772056)the Natural Science Foundation of Guangxi Zhuang Automomous Region,China(Grant Nos.2015GXNSFFA139002 and 2016GXNSFBA380152)the Open Fund of Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences(Grant No.CRYO201703)
文摘Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.