期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Release performance and sustained-release efficacy of emamectin benzoate-loaded polylactic acid microspheres 被引量:3
1
作者 YIN Ming-ming ZHU Xin-yan CHEN Fu-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期640-647,共8页
High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behav... High-performance liquid chromatography (HPLC) was employed to determine drug release rates based on emamectin benzoate concentrations in the medium. Release kinetics equations were used to fit the drug release behavior. The effects of particle size and release medium pH on the release rate were also investigated. The indoor toxicity of emamectin benzoate-loaded polylactic acid microspheres on the diamondback moth larva (Plutella xylostella) was studied to explore drug sustained-release performance. In acidic and neutral media, the drug release behavior of the microspheres was in accord with the first-order kinetics equation. Increasing the spray dosage of emamectin benzoate-loaded polylactic acid microspheres initially resulted in an equivalent insecticidal efficacy with the conventional emamectin benzoate microemulsion. However, the drug persistence period was four-fold longer than that observed using the conventional formulation. The developed emamectin benzoate-loaded polylactic acid microspheres showed dramatic sustained-release performance. A treatment threshold of greater than 35 mg mL-1 was established for an efficient accumulated release concentration of emamectin benzoate-loaded microspheres. 展开更多
关键词 emamectin benzoate polylactic acid microspheres release performance kinetics equation sustained-release efficacy
下载PDF
NMR relaxation and diffusion studies to probe the motional dynamics of risperidone within PLGA microsphere
2
作者 Deepak Kumar Samanwita Pal 《Magnetic Resonance Letters》 2023年第2期197-205,I0005,共10页
The present study aims to investigate the motional dynamics of risperidone within polylactic co-glycolic acid(PLGA)microsphere by employing solution state'H and 19F nuclear magnetic resonance(NMR)measurements.Risp... The present study aims to investigate the motional dynamics of risperidone within polylactic co-glycolic acid(PLGA)microsphere by employing solution state'H and 19F nuclear magnetic resonance(NMR)measurements.Risperidone,a second-generation fluorinated antipsychotic drug used for the treatment of schizophrenia is commercially marketed as PLGA microsphere formulation resulting in prolonged release of the drug in solution.Although the current trend in the pharmaceutical market is to develop drug formulation with long-acting release(LAR)products,complete physicochemical characterization of such formulations are scarce.Especially the effects of microsphere encapsulation on the motional properties and diffusion behavior of the drugs are not discussed adequately in any of the earlier reports.We therefore,have employed NMR relaxation and diffusion measurements to decipher the interaction of PLGA cavity water with risperidone.A detailed analysis of NMR relaxation rates confirmed the event of encapsulation and the presence of local motion in the non-fluorinated end of risperidone.Further,the relaxation data indicated a significant alteration in 19F chemical shift anisotropy(CSA)and CSA/dipole-dipole(DD)cross-correlated relaxation mechanism and decreased effect of solvent relaxation pointing out reduced water concentration within the microsphere cavity.'H and 19F diffusion coefficients of risperidone led to the information about hydrodynamic radius of risperidone in free and encapsulated states.Measurement of hydrodynamic radius supported the presence of limited water in PLGA cavity allowing higher translational mobility of risperidone after the encapsulation. 展开更多
关键词 polylactic co-glycolic acid(PLGA)microsphere Motional dynamics 1H and 19F NMR DIFFUSION Hydrodynamic radius Cross-correlated relaxation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部