期刊文献+
共找到242篇文章
< 1 2 13 >
每页显示 20 50 100
Simulation of Morphologies and Mechanical Properties of A/B Polymer Blend Film 被引量:2
1
作者 ZHAO Xuezhe DENG Shengwei HUANG Yongmin LIU Honglai HU Ying 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第4期549-557,共9页
The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) o... The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system. 展开更多
关键词 polymer blend film mechanical behavior Monte Carlo lattice spring model
下载PDF
Study of Polymer Blends with Sub-cluster Theory PartⅠ Essential Concepts and Equations of Sub-cluster Theory 被引量:2
2
作者 Riguang JIN and Hangquan LI (Beijing Institute of Chemical Technology, Beijing, 100029, China)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第2期111-116,共6页
Various viscosity-composition curves of polymer blends are summarized in eight groups. To represent these curves. 'sub-cluster equations' are derived on the basis of so called 'sub-cluster theoryThe essent... Various viscosity-composition curves of polymer blends are summarized in eight groups. To represent these curves. 'sub-cluster equations' are derived on the basis of so called 'sub-cluster theoryThe essential concepts of sub-cluster theory and the derivation of those 'Sub-cluster equations' are briefly introduced. 展开更多
关键词 Essential Concepts and Equations of Sub-cluster Theory Study of polymer blends with Sub-cluster Theory Part
下载PDF
EXPERIMENTAL INVESTIGATION OF THE LOW CYCLE FATIGUE CRACK PROPAGATION IN PC/ABS POLYMER BLENDS 被引量:1
3
作者 Notomi M. +1 位作者 Kishimoto K. 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第4期344-348,共5页
Low cycle fatigue crack propagation (FCP) behavior of two PC/ABSblends with a weight ra- tio of PC to ABS being 80/20 and 60/40,respectively, is investigated. Experiments are carried out by usingstandard compact tensi... Low cycle fatigue crack propagation (FCP) behavior of two PC/ABSblends with a weight ra- tio of PC to ABS being 80/20 and 60/40,respectively, is investigated. Experiments are carried out by usingstandard compact tension (CT) specimens. The fracture surfaces areexamined with a scanning electron mi- croscope (SEM). It is shownthat the FCP resistance of PC/ABS blend with 20/100 ABS particles ishigher than that of PC/ABS blend with 40/100 ABS particles. It isfound that proper ABS particle content can result in the tougheningof PC/ABS blends through particle cavitation and shear yielding inmatrix. 展开更多
关键词 polymer blend POLYCARBONATE ACRYLONITRILE-BUTADIENE-STYRENE FATIGUE
下载PDF
COALESCENCE INDUCED GRADIENT MORPHOLOGY NEAR A WALL IN PHASE SEPARATED POLYMER BLENDS DURING QUIESCENT ANNEALING
4
作者 Wei Yu Chi-xing Zhou De-lu Zhao Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100080, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第6期543-550,共8页
A fast coalescence mechanism is proposed to account for the wall effect on the formation of gradient morphology in phase separated polymer blends during quiescent annealing. The existence of solid wall with high polar... A fast coalescence mechanism is proposed to account for the wall effect on the formation of gradient morphology in phase separated polymer blends during quiescent annealing. The existence of solid wall with high polarity is believed to change the potential field around the dispersed particles near the wall. This additional potential interaction between the solid wall and the dispersed particles causes faster coalescence of the dispersed particles near the wall than in the bulk. The gradient phase morphology thus formed can be predicted by combining the wall-particle interaction and the touch-coalescence mechanism. The effect of interfacial tension on the gradient morphology is also discussed. 展开更多
关键词 gradient morphology wall effect COALESCENCE polymer blends interfacial tension
下载PDF
Study of Polymer Blends with Sub-cluster Theory Part 2 Comparison of PVC/ABS, PVC/SBS Blends
5
作者 Riguarng JIN and Hangquan LI(Bejing Institute of Chemical Technology, Beijing, 100029, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期181-187,共7页
Series of PVC/ABS and PVC/SBS blends of composition 20/ 80. 40/ 60, 60 / 40 and 80 / 20were prepared in a screw extruder. The phase morphology, miscibility and rheological behaviour of two systems were investigated. T... Series of PVC/ABS and PVC/SBS blends of composition 20/ 80. 40/ 60, 60 / 40 and 80 / 20were prepared in a screw extruder. The phase morphology, miscibility and rheological behaviour of two systems were investigated. The viscosity-composition plots were represented by sub-cluster equation, the various differences between two systems are interpreted with the equation parameters 展开更多
关键词 PVC/SBS blends SBS Study of polymer blends with Sub-cluster Theory Part 2 Comparison of PVC/ABS
下载PDF
COMPATIBILITY IN POLYMER BLENDS OF POLY (VINYL ACETATE) AND POLY (METHYL METHACRYLATE)STUDIED BY NMR
6
作者 宋默 戴莹坤 +2 位作者 胡澄 黄玉惠 丛广民 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第2期176-179,共4页
Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering te... Compatibility of poly (vinyl acetate) (PVAc) with poly (methyl methacrylate) (PMMA) mixtures has been studied by using nuclear magnetic relaxation, differential scanning calorimeter and small-angle X-ray scattering techniques. The nuclear magnetic relaxation time T_1's were measured as a function of composition in blends of PMMA and PVAc prepared from chloroform solution. The results show that the system is miscible for casting from chloroform solution. 展开更多
关键词 polymer blends ~1H nuclear magnetic relaxation Poly (vinyl acetate) Poly (methyl methacrylate)
下载PDF
PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE
7
作者 LING Fen YANG Pengfei +2 位作者 PAN Wei YANG Shenglin LI Guang 《Chinese Journal of Reactive Polymers》 2007年第1期108-111,共4页
The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results... The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc. 展开更多
关键词 Carbon nanofibers polymer blend WET-SPINNING Compatibility Morphology.
下载PDF
Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer 被引量:1
8
作者 Hai-Ling He Fu-Xin Liang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第4期500-515,I0005,共17页
Mixing two or more polymers to produce the“polymer alloy”is one of the most versatile and economical strategies for developing new polymeric materials.The compatibility between polymer components largely determines ... Mixing two or more polymers to produce the“polymer alloy”is one of the most versatile and economical strategies for developing new polymeric materials.The compatibility between polymer components largely determines the comprehensive performance of polymer blend.More recently,a type of unique surface partitioned materials,Janus particles,has been proposed to act as a novel interfacial compatibilizer for polymer blends.Such Janus particles integrates the amphipathicity of diblock copolymer and interfacial stabilization of nanoparticles,displaying a significant superiority in comparison with molecular compatibilizers for a wide range of polymer blends.In this review,we mainly focus on the compatibilizing effects of Janus nanofillers of various morphologies,including spherical,snowman-like,and two-dimensional nanosheets,on polymer blends.We shed light on the impacts of compatibilization of Janus particles on phase morphologies,mechanical properties,and functionalities of polymer blends.This review could provide a guidance for designing an effective Janus particle compatibilizer to develop high-performance polymer blends. 展开更多
关键词 Janus particles COMPATIBILIZER polymer blend Interfacial engineering
原文传递
Crystalline Morphology and Crystallization Kinetics of Melt-miscible Crystalline/Crystalline Polymer Blends of Poly(vinylidene fluoride) and Poly(butylene succinate-co-24mol% hexamethylene succinate) 被引量:2
9
作者 Gu-yu Wang 邱兆斌 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第9期1139-1148,共10页
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the charact... Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends. 展开更多
关键词 Crystalline morphology Crystallization kinetics polymer blends.
原文传递
Measuring the Interfacial Thickness of Immiscible Polymer Blends by Nano-probing of Atomic Force Microscopy 被引量:1
10
作者 Tian-Tian Li Si-Bo Cheng +3 位作者 Lian-Fang Feng Xue-Ping Gu Cai-Liang Zhang Guo-Hua Hu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2022年第4期421-430,共10页
Immiscible polymer blends are an important family of polymer materials.The interfacial thickness between different phases is a very important parameter that dictates,to a great extent,the morphology and properties of ... Immiscible polymer blends are an important family of polymer materials.The interfacial thickness between different phases is a very important parameter that dictates,to a great extent,the morphology and properties of such a blend.This work explores and optimizes an up-to-date atomic force microscopy(AFM)of type NanoIR2^(TM) system in order to quantitatively measure the interfacial thickness of immiscible polymer blends.This system is equipped with two nano-probes capable of detecting the response of a material to an infrared pulse called AFM-infrared spectroscopy mode(AFM-IR)or conducting resonance called AFM-Lorentz Contact Resonance mode(AFM-LCR),respectively.Its potential for quantitatively measuring the interfacial thickness of immiscible polymer blends is evaluated using blends composed of polyamide 6(PA6)and polyolefin elastomer(POE)in the presence or absence of a POE containing maleic anhydride(POE-g-MAH)as a compatibilizer.Surface roughness affects adversely the signal intensity and consequently an accurate measurement of the interfacial thickness.Optimum sample surface preparation procedures are proposed. 展开更多
关键词 polymer blends Interfacial thickness Atomic force microscopy Nano-probing Surface roughness
原文传递
Studies on Droplet Size Distributions during Coalescence in Immiscible Polymer Blends Filled with Silica Nanoparticles 被引量:1
11
作者 Zhi-ming Zou 孙昭艳 Li-jia AnState 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2014年第3期255-255,256-267,共13页
The effect of silica nanoparticles on the morphology of (10/90 wt%) PDMS/PBD blends during the shear induced coalescence of droplets of the minor phase at low shear rate was investigated systematically in situ by us... The effect of silica nanoparticles on the morphology of (10/90 wt%) PDMS/PBD blends during the shear induced coalescence of droplets of the minor phase at low shear rate was investigated systematically in situ by using an optical shear technique. Two blending procedures were used: silica nanoparticles were introduced to the blends by pre-blending silica particles first in PDMS dispersed phase (procedure 1) or in PBD matrix phase (procedure 2). Bimodal or unimodal droplet size distributions were observed for the filled blends during coalescence, which depend not so much on the surface characteristics of silica but mainly on blending procedure. For pure (10/90 wt%) PDMS/PBD blend, the droplet size distribution exhibits bimodality during the early coalescence. When silica nanoparticles (hydrophobic and hydrophilic) were added to the blends with procedure l, bimodal droplet size distributions disappear and unimodal droplet size distributions can be maintained during coalescence; the shape of the different peaks is invariably Gaussian. Simultaneously, coalescence of the PDMS droplets was suppressed efficiently by the silica nanoparticles. It was proposed that with this blending procedure the nanoparticles should be mainly kinetically trapped at the interface or in the PDMS dispersed phase, which provides an efficient steric barrier against coalescence of the PDMS dispersed phase. However, bimodal droplet size distributions in the early stage of coalescence still occur when incorporating silica nanoparticles into the blends with procedure 2, and then coalescence of the PDMS droplets cannot be suppressed efficiently by the silica nanoparticles. It was proposed that with this blending protocol the nanoparticles should be mainly located in the PBD matrix phase, which leads to an inefficient steric barrier against coalescence of the PDMS dispersed phase; thus the morphology evolution in these filled blends is similar to that in pure blend and bimodal droplet size distributions can be observed during the early coalescence. These results imply that exploiting non-equilibrium processes by varying preparation protocol may provide an elegant route to regulate the temporal morphology of the filled blends during coalescence. 展开更多
关键词 Droplet size distribution Immiscible polymer blends COALESCENCE Silica nanoparticles.
原文传递
Constructing vertical phase separation of polymer blends via mixed solvents to enhance their photovoltaic performance
12
作者 Qingqing Yang Jiantai Wang +3 位作者 Xiaoqin Zhang Jun Zhang Yingying Fu Zhiyuan Xie 《Science China Chemistry》 SCIE EI CAS CSCD 2015年第2期309-316,共8页
A polymer blend comprising poly(3-hexylthiophene)(P3HT)donor and poly[2,7-(9,9′-octyl-fluorene)-alt-5,5-(4′,7′-di-2-thienyl-5′,6′-bis(hexyloxy)-2′,1′,3′-benzothiadiazole)](PFDTBT-OC6)acceptor is used as the ac... A polymer blend comprising poly(3-hexylthiophene)(P3HT)donor and poly[2,7-(9,9′-octyl-fluorene)-alt-5,5-(4′,7′-di-2-thienyl-5′,6′-bis(hexyloxy)-2′,1′,3′-benzothiadiazole)](PFDTBT-OC6)acceptor is used as the active layer to fabricate all-polymer solar cells.The blend morphology variance processed with pure and mixed solvents,and the related photovoltaic performance,are investigated in detail.It is found that,due to its low surface energy,a thin P3HT enrichment layer on the top surface of the active layer greatly increases bimolecular recombination and results in S-kinks of the illuminated current density-voltage curves.With the incorporation of p-xylene(a marginal solvent of P3HT)in the blend solution,the P3HT enrichment atop the active layer surface is effectively decreased because the high boiling-point p-xylene suppresses the diffusion of P3HT chains toward the top surface during the film-drying process.The bimolecular recombination was thus improved and the S-kinks of the photovoltaic curves were completely removed.The overall power conversion efficiencies of the devices are strongly boosted(from 0.88%to 1.41%)when chlorobenzene:p-xylene mixed solvent is used to replace pure chlorobenzene. 展开更多
关键词 polymer solar cells polymer blends vertical phase separation bimolecular recombination S-kink
原文传递
Coalescence Suppression in Flowing Polymer Blends Using Silica Rods with Different Surface Chemistries
13
作者 Si-Ying Xiang Li-Sa-Ya Ye +3 位作者 Ya-Jiang Huang Ya-Dong Lv Mi-Qiu Kong Guang-Xian Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第4期474-483,I0007,共11页
Silica rods with homogeneous(hydrophilic or hydrophobic)and amphiphilic surface properties were synthesized and their efficiencies in suppressing the flow-induced droplet coalescence of immiscible polyisobutylene(PIB)... Silica rods with homogeneous(hydrophilic or hydrophobic)and amphiphilic surface properties were synthesized and their efficiencies in suppressing the flow-induced droplet coalescence of immiscible polyisobutylene(PIB)/polydimethylsiloxane(PDMS)blends were evaluated via in situ visualization technique.The flow-induced coalescence behavior of blends was found to strongly depend on the surface nature and concentration of silica rods added as well as the blend ratio.While a trace amount of rods promoted coalescence,all kinds of rods demonstrated a morphology refinement effect at high rod concentrations.Good compatibilization effects were obtained at high rod concentrations,especially for hydrophilic and amphiphilic rods.Based on confocal laser scanning microscopy results,these phenomena observed were interpreted reasonably in terms of the selective distribution and aggregation of silica rods,which were suggested to be decisive for the stabilization mechanism and efficiency of these rods. 展开更多
关键词 Immiscible polymer blends FLOW MORPHOLOGY Silica rods Surface chemistry
原文传递
Mechanical behavior and wrinkling patterns of phaseseparated binary polymer blend film
14
作者 Xuezhe ZHAO Shengwei DENG +2 位作者 Yongmin HUANG Honglai LIU Ying HU 《Frontiers of Chemistry in China》 2011年第3期159-163,共5页
The wrinkling of phase-separated binary polymer blend film was studied through combining the Monte Carlo(MC)simulation for morphologies with the lattice spring model(LSM)for mechanical properties.The information of mo... The wrinkling of phase-separated binary polymer blend film was studied through combining the Monte Carlo(MC)simulation for morphologies with the lattice spring model(LSM)for mechanical properties.The information of morphology and structure obtained by use of MC simulation is input to the LSM composed of a three-dimensional network of springs,which allows us to determine the wrinkling and the mechanical properties of polymer blend film,such as strain,stress,and Young’s modulus.The simulated results show that the wrinkling of phase-separated binary polymer blend film is related not only to the structure of morphology,but also to the disparity in elastic moduli between polymers of blend.Our simulation results provide fundamental insight into the relationship between morphology,wrinkling,and mechanical properties for phase-separated polymer blend films and can yield guidelines for formulating blends with the desired mechanical behavior.The wrinkling results also reveal that the stretching of the phase-separated film can form the micro-template,which has a wide application prospect. 展开更多
关键词 polymer blend film phase separation mechanical property WRINKLING lattice spring model
原文传递
Study of Thermal,Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol)Blend Bioplastics
15
作者 Yodthong Baimark Theeraphol Phromsopha 《Journal of Renewable Materials》 SCIE EI 2023年第4期1881-1894,共14页
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio... A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials. 展开更多
关键词 Poly(lactic acid) poly(ethylene glycol) polymer blends phase morphology thermal stability
下载PDF
SYNTHESIS OF AN AMPHIPHILIC PPESK-g-P(PEGMA)GRAFT COPOLYMER VIA ATRP AND ITS USE IN BLEND MODIFICATION OF PPESK MEMBRANES
16
作者 徐又一 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第6期813-820,共8页
Preparation of an amphiphilic graft copolymer having poly(phthalazinone ether sulfone ketone)(PPESK) as main chains was carried out by atom transfer radical polymerization(ATRP).The precursor,chloromethylated PPESK (C... Preparation of an amphiphilic graft copolymer having poly(phthalazinone ether sulfone ketone)(PPESK) as main chains was carried out by atom transfer radical polymerization(ATRP).The precursor,chloromethylated PPESK (CMPPESK),was prepared by using chioromethylether as chloromethylation agent.Then,poly(ethylene glycol) methyl ether methacrylate(PEGMA) was used as monomer to synthesize PPESK-g-P(PEGMA) by ATRP method under the catalysis of a cuprous chloride/2,2'-bipyridyl system.PPESK/PPESK-g-P(PEGMA) blend m... 展开更多
关键词 AMPHIPHILIC Poly(phthalazinone ether sulfone ketone) Graft copolymer Atomic transfer radical polymerization blend membranes
下载PDF
Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C_(60) Bis-Adduct
17
作者 郭敏楠 刘少伟 +3 位作者 郭娜 杨利营 秦文静 印寿根 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期142-146,共5页
The performance and morphology stability of polymer bulk heterojunetion solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C6o bisadduct (ICBA) or methanofullerene [6,6]-phenyl C61-butyri... The performance and morphology stability of polymer bulk heterojunetion solar cells based on poly(3-hexylthiophene) (P3HT) as the donor and indene-C6o bisadduct (ICBA) or methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the aeceptor are compared. Effect of the different donor and aeeeptor weight ratios on photo- voltaic performance of the P3HT:ICBA device is studied. The optimal device achieved power conversion emeiency of 5.51~o with dso of l0.86mA/cm2, Voc of 0.83 V, and fill factor (FF) of 61.1 % under AM 1.5G (lOOmW/cm2) simulated solar illumination. However, the stability measurement shows that cells based on P3HT:ICBA are less stable than those of the device based on P3HT:PCBM. Atomic force microscope results reveal that the morphol- ogy of the P3HT:ICBA film changed considerably during the storage periods due to unstable interpenetrating D-A network. This observation can be explained by the fact that there is lack of intermolecular hydrogen bonds in the P3HT:ICBA system. However, in the P3HT:PCBM system the molecules in the blend film are firmly held together in the solid state by means of intermoleeular hydrogen bonds originating from C-H. ~. Os bonds (where Os comes from the singly-bonded 0 atom of PCBM), forming a stable three-dimensional network. The measured PL decay lifetimes for P3HT:PCBM and P3HT:ICBA systems are 33.66 ns and 35.34 ns, respectively, indicating that the P3HT:ICBA system has a less efficient exciton separation eftleiency than that of P3HT:PCBM, which may result in the interracial photogenerated charges accumulated on the D: A interface. Such progressive phase segregation between P3HT and ICBA eventually leads to the degradation in performance and deteriorates the stability of the device. We also present an approach to enhance the stability of P3HT:ICBA systems by adding PCBM as the second acceptor. Our results show that by carefully tuning the contents of PCBM as the second acceptor, more stable polymer solar cells can be obtained. 展开更多
关键词 PCBM HT as for in of Hexylthiophene Performance and Stability of polymer Solar Cells Based on the blends of Poly Bis-Adduct on
下载PDF
Crystalline Morphology and Crystallization Characteristics of In-situ Blends of Anionic Polyamide 6 with Noncrystallizable Semiaromatic Polyamide Copolymer 被引量:1
18
作者 WANG Xiao-chun ZHENG Qiang YANG Gui-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第3期360-365,共6页
A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of ... A noncrystallizable semiaromatic polyamide copolymer(NSAP) was dissolved in molten caprolactam, and PA6/ NSAP blends were produced in-situ via the anionic ring-opening polymerization of caprolactam. The presence of a single loss tangent(tanS) peak measured by means of dynamic mechanical analysis(DMA) proves the miscibility between PA6 and NSAP in the blends. It was found that there existed drastic changes in the crystallographic form and crystallization kinetics for the in-situ blends, e.g. , when 20% NSAP was added, nearly all crystallites existed in the ,y form and the crystallization could hardly occur upon cooling even at a rate of 2.5 ℃/min. Moreover, cold crystallization appears during the subsequent heating, and its melting point is 40 ℃ lower than that of the virgin system. On the other hand, the size of the spherulites only decreases modestly. It is suggested that the introduction of irregular stiff segments originated from NSAP into PA6 macromolecule chain, which resulted from transamidation during the polymerization play a dominant role in the drastic change of crystallization kinetics and the resultant morphology of the in-situ blends. 展开更多
关键词 In-situ blend Noncrystallizable polyamide copelymer Anionic polymerization Morphology Crystallization
下载PDF
Thermoelectric properties of Bi_(0.5)Sb_(1.5)Te_3/polyaniline composites prepared by mechanical blending and in-situ polymerization
19
作者 胡淑红 裴浩东 赵新兵 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期876-878,共3页
Bi 0.5 Sb 1.5 Te 3/polyaniline composites were prepared by mechanical blending and in situ polymerization, and their transport properties were measured. It was found that for the composites with 1%, 3%, 5% and 7% poly... Bi 0.5 Sb 1.5 Te 3/polyaniline composites were prepared by mechanical blending and in situ polymerization, and their transport properties were measured. It was found that for the composites with 1%, 3%, 5% and 7% polyaniline (mass fraction) respectively, which were prepared by mechanical blending, the power factors decrease by about 30%, 50%, 55% and 65% compared with the Bi 0.5 Sb 1.5 Te 3 samples, which is mainly due to the remarkable decreases of the electrical conductivity. The electrical conductivity and power factor of the composites samples with 7% polyaniline prepared by in situ polymerization are higher by about 65% and 60%, respectively, than that of the corresponding samples prepared by mechanical blending. 展开更多
关键词 thermoelectric property Bi 0.5 Sb 1.5 Te 3/polyaniline composite mechanical blending in situ polymerization
下载PDF
Post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate blends with enhanced stablity
20
作者 李晓 薛振杰 +6 位作者 王靖 黄川辉 刘立志 乔学志 刘聪 宋倩 李迎春 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第2期103-109,共7页
Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market appli... Hybrid organic-inorganic perovskites have been the subject of recent intense interest due to advances in photovoltaic and other optoelectronic applications. However, their poor stability limits commercial market application We enhance water stability by post treatment preparation of hybrid metal halide perovskite nanocrystal-embedded polymethylmethacrylate (PM- MA) blend films. Through blending process without any cleaning of nanocrystals, crystalline hybrid organic-inorganic perovs-kite nanocrystals were incorporated into PMMA matrix with well-dispersion Passivation of PMMA on the surface of the per-ovskite nanocrystals results in decreased traps and a long photoluminescence (PL) lifetime despite the bromine vacancies in the crystal lattice. Moreover, such color purity and inherent high transmittance for fluorescence emission of perovskite nanocrystals will endow the films with promising potentials in diverse practice photonic applications. 展开更多
关键词 perovskite stability polymer blends perovskite blends fluorescence polymethylmethacrylate (PMMA)
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部