In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also invest...In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also investigated the role of capping on the SHG, temporal stability and relaxation of dipole alignment. Corona poling techniques were employed to orient the dopants into the noncentrosymmetric structure required to obtain the SHG. The effect of capping with a polymeric encapsulant below the glass transition temperature of the polymers on the unpoled and corona poled thin films was studied. Capping of the nonlinear polymer and guest host thin films have resulted in high SHG with good temporal stability. SHG signal falls drastically during the first 8 days after poling while no further significant decay in SHG signal was observed after about 33 days. Our investigations have identified the characteristics required for a good encapsulant on a non-con-ductive surface.展开更多
It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or hetero...It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.展开更多
Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave ref...Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.展开更多
We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hex...We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.展开更多
文摘In attempts to fabricate thermally stable second-order nonlinear polymer thin films, we have investigated the second harmonic generation (SHG) from both nonlinear polymer and guest-host thin films. We have also investigated the role of capping on the SHG, temporal stability and relaxation of dipole alignment. Corona poling techniques were employed to orient the dopants into the noncentrosymmetric structure required to obtain the SHG. The effect of capping with a polymeric encapsulant below the glass transition temperature of the polymers on the unpoled and corona poled thin films was studied. Capping of the nonlinear polymer and guest host thin films have resulted in high SHG with good temporal stability. SHG signal falls drastically during the first 8 days after poling while no further significant decay in SHG signal was observed after about 33 days. Our investigations have identified the characteristics required for a good encapsulant on a non-con-ductive surface.
基金This work was supported by the Institute of Nano Science and Technology and the Hong Kong University of Science and Technology through the Postdoctoral Matching Fund.
文摘It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.
文摘Several methods for investigating the thickness uniformity of polymer thin films are presented as well as their measurement principles. A comparison of these experimental methods is given.The cylindrical lightwave reflection method is found to can obtain the thickness distribution along a certain direction.It is a simple and suitable method to evaluate the film thickness uniformity.
文摘We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly(3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester(PCBM). 1% vanadium-doped TiO2nanoparticles were synthesized via the solvothermal method. Crystalline structure, morphology, and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction, scanning electron microscopy, transmittance electron microscopy, and UV–visible transmission spectrum. The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm. The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm. The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm^2 compared with its pure counterpart. In the cells using 60 nm pure and vanadium-doped TiO2 layers, the cell using the doped layer showed much higher efficiency. It is remarkable that the external quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.