We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized ...We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.展开更多
A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric io...A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric ionic liquids P[Ci(Vim)_2][H_2PO_4]_2(i = 2,3,4,5,6) were then obtained via ion exchange.The structures of P[C_4(Vim)_2][Cl]_2 and P[C_4(Vim)_2][H_2PO_4]_2 were characterized by Fourier transform infrared(FT-IR) spectroscopy,energy dispersive spectrometry(EDS),N2 adsorption-desorption isotherm measurements,scanning electron microscopy(SEM),thermogravimetric analysis and differential scanning calorimetry(TG/DSC).The removal of nitrogen compounds was characterized by pyridineFTIR spectrometry.The results indicated that P[C_4(Vim)_2][H_2PO_4]_2 with an average pore size of 19.23 nm and a specific surface area of 11.78 m^2/g was efficient for the removal of nitrogen compounds,and exhibited good thermal stability.The adsorption rate in the simulated oil reached 93.8% when using a polymeric ionic liquid P[C_4(Vim)_2][H_2PO_4]_2 to oil ratio of 0.04 and a temperature of 313 K.The nitrogen removal rate from the coal-tar diesel fraction achieved by P[C_4(Vim)_2][H_2PO_4]_2 was 90.3%.展开更多
Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Th...Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.展开更多
To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,cr...To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,crosslinker)with the addition of n-heptane(porogen)was carried out for the fabrication of the porous polymer(PVD)microsphere as support,followed by the immobilization of sulfonic acid-functionalized ionic liquids by the successive treatment of benzimidazole(BIm),1,3-propane sultone and sulfuric acid(H2SO4)or trifluoromethanesulfonic acid(CF3SO3H).The effects of the compositions of DVB and n-heptane on the internal structure of the polymer supports were investigated,and it was found that the support with 40 wt%DVB and 60 wt%n-heptane(with relative to the monomer)could endow the final PSILs with the relatively optimal catalytic performance.The preliminary experiment in the batch reactor indicated that PSILs herein exhibited higher catalytic activities than commercial Amberlyst 46 resin for the esterification of propanoic acid(PROAc)with n-propanol(PROOH).Consequently,the optimal PSILs catalyst,PVD-[Bim-SO3H]HSO4,was selected for further study in the batch reactive distillation column because of low cost and its ease of preparation.The yield of propyl ropionate(PROPRO)could reach up to 97.78%at the optimized conditions of PROOH/PROAc molar ratio(2:1)and catalyst dosage(2.0 wt%).The investigation of the reaction kinetic manifested that the calculated results of second order pseudo-homogeneous kinetic model were in good agreement with experimental values.The pre-exponential factor and activation energy were 4.12×107 L·mol-1·min-1 and 60.57 k J·mol-1,respectively.It is worth noting that the PSILs catalyst could be simply recovered and reused with relatively satisfactory decrease in the catalytic activity,which made it an environmental friendly and promising catalyst in the industrial application.展开更多
Polyacrylonitriles (PANs) ware synthesized both by atom transfer radical polymerization (ATRP) anti free radical polymerization in ionic liquid 1 - buty - 3 - methylimidazolium chloride ([bmim]Cl). [bmim]Cl demo...Polyacrylonitriles (PANs) ware synthesized both by atom transfer radical polymerization (ATRP) anti free radical polymerization in ionic liquid 1 - buty - 3 - methylimidazolium chloride ([bmim]Cl). [bmim]Cl demonstrates to be a preferable solvent for ATRP of acrylonitrile (AN). The polymerization maintains the usual advantages of ATRP with molecular weight agrees well with theoretical value and low polydispersity (PDI = 1.15). It is also shown the higher conversion and lower molecular weight dispersion in ionic liquid than in dimethylformamide (DMF). From FTIR and NMR analysis, it is confirmed that the chemical structures of PANs synthesized in [bmim]Cl were identical with that obtained in DMF. In atom transfer radical polymerization, the methine and cyan carbon atoms in isotactic configuration for PAN produced in [bmim] Cl have a configuration consisting of about 55.5% isotactic diads. It is higher than that obtained in DMF which is 52.2%. So, ionic liquid has effect on the stereostructure of PANs. Further analysis of ^13C NMR spectra indicated that the isotacticity of PAN synthesized by free radical polymerization was lower than that of PAN prepared by ATRP, although both of them were random in stereoregularity. Besides the pentad tacticities of PANs also suggested that the sequence distributions of them all obey Bernoulli statistics.展开更多
The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator ...The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator and CuBr/pentamethyldiethylenetria-mine(PMDETA) as catalyst.The polydispersity index(PDI) in the ATRP of acrylonitriel(AN) in ILs is lower than 1.3.From the polymerization kinetics,plots of ln([M]0/[M]) with time show a linear dependence at the early stage of polymerization while the deviation is observed with the conversion rate increasing.The polymerization rate in ILs,especially in 1-butyl-3-methylimidazolium chloride([bmim]Cl),is higher than that in N,N-dimethylformamide(DMF).The polymerization rate increased and the average molecular weight decreased with temperature increasing.The polymerization rate,molecular weight and PDI varied with the variation of [AN]0:[EPN-Br]0:[CuBr]0:[PMDETA]0 ratio in the experimental range,the polymerization of AN in [bmim]Cl displayed living polymerization characteristics.Moreover,the catalyst and ILs are easily isolated from the polymer and reused.展开更多
N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)...N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)) were mixed and made into ionic liquid gel polymer electrolytes (ILGPEs) by solution casting. The morphology of ILGPEs was observed by scanning electron microscopy. It was found that the ILGPE had a loosened structure with liquid phase uniformly distributed. The ionic conductivity, lithium ion transference num- bet and electrochemical window were measured by electrochemical impedance spectroscopy, chronoamperometric and linear sweep voltammetry. The ionic conductivity and lithium ion transference number of this ILGPE reached 0.79 mS/cm and 0.71 at room temperature, and the electrochemical window was 0 to 5.1 V vs. Li+/Li. Battery tests indicated that the ILGPE is stable when being operated in Li/LiFePO4 batteries. The discharge capacity maintained at about 135, 117, and 100 mAh/g at 30, 75, and 150 mA/g rates, respectively. The capacity retentions were almost 100% after 100 cycles without little capacity fading.展开更多
Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The ...Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.展开更多
Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving perfo...Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving performance of latex coating products such as better thermal stability, conductivity, and antifouling property. The formation of latex coating containing RTILs can be achieved by encapsulation of RTILs inside particles via miniemulsion polymerization. In this study, the role of RTILs and its concentration on stability of miniemulsion during storage and polymerization were investigated. It has been found that, above a critical concentration(10 wt%), adding more RTILs to oil phase may weaken miniemulsion stability during storage as well as polymerization. Such observations were consistent with the zeta potential measurement for miniemulsions prepared at the similar conditions. The results obtained here would be a useful guideline for the development of new waterborne coating products with desirable functions and particle sizes.展开更多
Starting from the hydroxylamine (dimethyl amino ethanol, triethanolamine) and 1,3-propane sultone, a series of hydroxyl and sulfonyl dual-functionalized zwitterionic salts and corresponding acidic room temperature ion...Starting from the hydroxylamine (dimethyl amino ethanol, triethanolamine) and 1,3-propane sultone, a series of hydroxyl and sulfonyl dual-functionalized zwitterionic salts and corresponding acidic room temperature ionic liquids have been synthesized. The hydroxyl groups of the synthesized substances were confirmed by the 1H NMR measurement. These zwitterionic salts and ionic liquids may be used for synthesizing other functionalized ionic liquids or ionic liquid-polymer (polyelectrolyte).展开更多
Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based o...Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.展开更多
In recent years, one of the priority areas of research in chemistry has become the processes carried out in an environment of liquid organic salts, the so-called ionic liquids (ILs), which are assessed as environmenta...In recent years, one of the priority areas of research in chemistry has become the processes carried out in an environment of liquid organic salts, the so-called ionic liquids (ILs), which are assessed as environmentally friendly or “green” alternatives to conventional organic solvents. ILs are non-volatile, highly polar solvents that dissolve many organic, inorganic, and organometallic compounds. Since they have no detectable vapor pressure, ILs are considered as potential substitutes for volatile organic compounds traditionally used as solvents. So-called deep eutectic solvents (DES) is a group of ILs that are liquid mixtures of a number of organic and (or) inorganic components taken in a certain ratio (eutectic or close to eutectic). DES deserve a special attention due to their negligible saturated vapor pressure, availability, low cost, as well as ability to dissolve at relatively high concentration of metal salts, metal oxides and various polymers. Particularly DES based on a mixture of choline chloride with urea (DES-1) or a mixture of choline chloride and adduct of urea with hydrogen peroxide (DES-2) give eutectics that are liquid at ambient temperature and have unusual solvent properties, including an ability to dissolve an animal hair in the presence of low concentration of sodium sulfide or ammonium thioglycolate. It was found that depending on the ratio between DES-1 and DES-2 in the mixture of two Deep Eutectic Solvents and the nature of sulfur-containing additive, the solubility of rabbit hair under used conditions, varies from 51% to 79%.展开更多
This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional sma...This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional small-molecule probe of acid fuchsin with HBPILs. The obtained HBPIL vesicle displayed ultraviolet absorption at 544 nm, and was used as a novel SO2 derivative sensor with high sensitivity and visualization. Due to the functional ion pairs enriching on the surface, the SO32 detection limit of the HBPILs vesicles was as low as 0.138 gmol/L, which was about 1.5 orders of magnitude lower than that of acid fuchsin.展开更多
All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance ...All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.展开更多
A method of in-situ reduction to prepare Au@Pt core-satellite nanopar- ticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the t...A method of in-situ reduction to prepare Au@Pt core-satellite nanopar- ticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size (-2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction ofp- nitrophenol with NaBH4.展开更多
To enhance the solubility of polyanilines(PANI),polymeric ionic liquid(PIL)was introduced into the polymerization synthesis of PANI with various proportions.The structure and properties of the modified PANIs were char...To enhance the solubility of polyanilines(PANI),polymeric ionic liquid(PIL)was introduced into the polymerization synthesis of PANI with various proportions.The structure and properties of the modified PANIs were characterized by 1H NMR,Fourier transform infrared spectroscopy,thermogravimetric analysis,ultraviolet-visible spectrum,etc.It was found that the obtained PANIs doped with PILs were soluble in various organic solvents such as N,N-dimethyl formamide and acetonitrile.Compared with the pure PANI,the PANIs doped by PILs showed remarkable solubility and their chemical structure and conductivity kept integrated.展开更多
We like to highlight the extension of COSMO-based models(COSMO RS-FV and COSMO SAC-FV)to the prediction of gas solubility in polymers,including polymerized ionic liquids(PILs)for the first time.To verify the applicabi...We like to highlight the extension of COSMO-based models(COSMO RS-FV and COSMO SAC-FV)to the prediction of gas solubility in polymers,including polymerized ionic liquids(PILs)for the first time.To verify the applicability of COSMO-based models,the predicted values for gas solubility in both common polymers(CH_(4)/N_(2)+PEG)and PELs(CO_(2)+P[MATMA][BF_(4)]/P[VATMA][BF_(4)])were evaluated based on previous experimental data.It was confirmed that the COSMO-RS(Klamt)model performs better than the COSMO-SAC model for common polymers,whereas the COSMO-RS(ADF-Lei 2018)exhibits the best predictions for PILs.The moderately accurate predictions of COSMObased models demonstrate the high potential for predicting gas solubility in polymers.展开更多
1 Results Classical solutions of electrolytes are obtained by dissolution of salts in molecular solvents. Such systems consist of solvated ions, their charged or neutral combinations and solvent molecules. On the othe...1 Results Classical solutions of electrolytes are obtained by dissolution of salts in molecular solvents. Such systems consist of solvated ions, their charged or neutral combinations and solvent molecules. On the other hand, a salt may be melted down, or in other words 'liquified’, by providing to the system a heat to counterbalance the salt lattice energy. Such a system, called molten salts or ionic liquid (IL), consists of ions and their combinations and is free of any molecular solvent. Relatively hi...展开更多
A novel polymeric ionic liquid grafted porous polymer monolith has been facilely fabricated for mixed-mode chromatography.The column is prepared from poly(glycidyl methacrylate-co-ethylene dimethacrylate)monolith thro...A novel polymeric ionic liquid grafted porous polymer monolith has been facilely fabricated for mixed-mode chromatography.The column is prepared from poly(glycidyl methacrylate-co-ethylene dimethacrylate)monolith through hydrolyzation of the epoxy moieties into hydroxyl groups,followed by“grafting from”polymerization of ionic liquid of 1-vinyl-3-butylimidazolium chloride.Successful modification is characterized by scanning electron microscope,infrared spectroscopy,elemental analysis and mercury intrusion porosimetry.The HPLC performance of developed column is evaluated by separating acidic vitamin B analytes,neutral steroids and basic aromatic amines in mixed-mode chromatography on a single column,respectively.The ionic liquid affords the monolith with both enhanced separation ability and improved column efficiency.展开更多
基金financially supported by State Key Laboratory of Organic-Inorganic Composites(oic-201601012)the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0080
文摘We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF, P[VEIm]PFby free-radical polymerization in solution. These PILs were characterized by FT-IR,H-NMR,C-NMR, TGA, XRD and SEM. Their COadsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for COthan those imidazolium PILs, following P[VBTHEA]Cl > P[VEIm]PF> P[VEIm]BF> P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CObulk absorption than imidazolium PILs. COadsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for COover Nand regeneration efficiency.
文摘A series of highly cross-linked polymeric ionic liquids P[Ci(Vim)_2][Cl]_2(i = 2,3,4,5,6) were synthesized by quaternization reaction and polymerization,and used to remove nitrogen compounds from oils.The polymeric ionic liquids P[Ci(Vim)_2][H_2PO_4]_2(i = 2,3,4,5,6) were then obtained via ion exchange.The structures of P[C_4(Vim)_2][Cl]_2 and P[C_4(Vim)_2][H_2PO_4]_2 were characterized by Fourier transform infrared(FT-IR) spectroscopy,energy dispersive spectrometry(EDS),N2 adsorption-desorption isotherm measurements,scanning electron microscopy(SEM),thermogravimetric analysis and differential scanning calorimetry(TG/DSC).The removal of nitrogen compounds was characterized by pyridineFTIR spectrometry.The results indicated that P[C_4(Vim)_2][H_2PO_4]_2 with an average pore size of 19.23 nm and a specific surface area of 11.78 m^2/g was efficient for the removal of nitrogen compounds,and exhibited good thermal stability.The adsorption rate in the simulated oil reached 93.8% when using a polymeric ionic liquid P[C_4(Vim)_2][H_2PO_4]_2 to oil ratio of 0.04 and a temperature of 313 K.The nitrogen removal rate from the coal-tar diesel fraction achieved by P[C_4(Vim)_2][H_2PO_4]_2 was 90.3%.
基金This work was supported by the National Natural Science Foundation of China (Grants 20174001, 29992590-4) and the Ministry of Education of China for the teaching and research award fund for outstanding young teacher in higher education institutions.
文摘Two new chiral ionic liquids, 1 -((-)-menthoxycarbonylmethylene)-3-methylimidazolium hexafluorophosphateand 1-((-)-menthoxycarbonylmethylene)-3-hexadecylimidazolium hexafluorophosphate, were designed an d prepared. Theirchemical structures were characterized by ~1H-NMR. Reverse atom transfer radical polymerization of methyl methacrylate(MMA) in these two ionic liquids was carried out using AIBN/CuCl_2/bipy as the initiating system. The resultant well-definedpolymethyl methacrylate (PMMA) was employed as a macroinitiator to induce the atom transfer radical polymerization ofmenthyl methacrylate (MnMA) in chlorobenzene, which yielded a PMMA-b-PMnMA diblock copolymer with narrow polydispersity.
基金The National Natural Science Foundation of China(21576053,91534106)the Natural Science Foundation of Fujian Province(2016J01689).
文摘To prepare polymer supported ionic liquids(PSILs)as effective catalysts for esterification,the free radical suspension copolymerization of vinylbenzyl chloride(VBC,monomer),styrene(St,monomer)and divinylbenzene(DVB,crosslinker)with the addition of n-heptane(porogen)was carried out for the fabrication of the porous polymer(PVD)microsphere as support,followed by the immobilization of sulfonic acid-functionalized ionic liquids by the successive treatment of benzimidazole(BIm),1,3-propane sultone and sulfuric acid(H2SO4)or trifluoromethanesulfonic acid(CF3SO3H).The effects of the compositions of DVB and n-heptane on the internal structure of the polymer supports were investigated,and it was found that the support with 40 wt%DVB and 60 wt%n-heptane(with relative to the monomer)could endow the final PSILs with the relatively optimal catalytic performance.The preliminary experiment in the batch reactor indicated that PSILs herein exhibited higher catalytic activities than commercial Amberlyst 46 resin for the esterification of propanoic acid(PROAc)with n-propanol(PROOH).Consequently,the optimal PSILs catalyst,PVD-[Bim-SO3H]HSO4,was selected for further study in the batch reactive distillation column because of low cost and its ease of preparation.The yield of propyl ropionate(PROPRO)could reach up to 97.78%at the optimized conditions of PROOH/PROAc molar ratio(2:1)and catalyst dosage(2.0 wt%).The investigation of the reaction kinetic manifested that the calculated results of second order pseudo-homogeneous kinetic model were in good agreement with experimental values.The pre-exponential factor and activation energy were 4.12×107 L·mol-1·min-1 and 60.57 k J·mol-1,respectively.It is worth noting that the PSILs catalyst could be simply recovered and reused with relatively satisfactory decrease in the catalytic activity,which made it an environmental friendly and promising catalyst in the industrial application.
基金Science and Technology Commission of Shanghai Municipality fund (No.04JC14011)Shanghai Municipal Education Commission (No. DAWN Project) fund
文摘Polyacrylonitriles (PANs) ware synthesized both by atom transfer radical polymerization (ATRP) anti free radical polymerization in ionic liquid 1 - buty - 3 - methylimidazolium chloride ([bmim]Cl). [bmim]Cl demonstrates to be a preferable solvent for ATRP of acrylonitrile (AN). The polymerization maintains the usual advantages of ATRP with molecular weight agrees well with theoretical value and low polydispersity (PDI = 1.15). It is also shown the higher conversion and lower molecular weight dispersion in ionic liquid than in dimethylformamide (DMF). From FTIR and NMR analysis, it is confirmed that the chemical structures of PANs synthesized in [bmim]Cl were identical with that obtained in DMF. In atom transfer radical polymerization, the methine and cyan carbon atoms in isotactic configuration for PAN produced in [bmim] Cl have a configuration consisting of about 55.5% isotactic diads. It is higher than that obtained in DMF which is 52.2%. So, ionic liquid has effect on the stereostructure of PANs. Further analysis of ^13C NMR spectra indicated that the isotacticity of PAN synthesized by free radical polymerization was lower than that of PAN prepared by ATRP, although both of them were random in stereoregularity. Besides the pentad tacticities of PANs also suggested that the sequence distributions of them all obey Bernoulli statistics.
文摘The controllable molecular weight and polydispersity of polyacrylonitriles(PANs) were synthesized in ionic liquids(ILs) by atom transfer radical polymerization(ATRP) using ethyl-2 bromopropionate(EPN-Br) as initiator and CuBr/pentamethyldiethylenetria-mine(PMDETA) as catalyst.The polydispersity index(PDI) in the ATRP of acrylonitriel(AN) in ILs is lower than 1.3.From the polymerization kinetics,plots of ln([M]0/[M]) with time show a linear dependence at the early stage of polymerization while the deviation is observed with the conversion rate increasing.The polymerization rate in ILs,especially in 1-butyl-3-methylimidazolium chloride([bmim]Cl),is higher than that in N,N-dimethylformamide(DMF).The polymerization rate increased and the average molecular weight decreased with temperature increasing.The polymerization rate,molecular weight and PDI varied with the variation of [AN]0:[EPN-Br]0:[CuBr]0:[PMDETA]0 ratio in the experimental range,the polymerization of AN in [bmim]Cl displayed living polymerization characteristics.Moreover,the catalyst and ILs are easily isolated from the polymer and reused.
文摘N-Methyl-N-propylpiperidiniumbis(trifluoromethanesulfonyl)imide (PP13TFSI), bis(triflu- oromethanesulfonyl)imide lithium salt (LiTFSI), and poly(vinylidene difluoride-co- hexafluoropropylene) (P(VdF-HFP)) were mixed and made into ionic liquid gel polymer electrolytes (ILGPEs) by solution casting. The morphology of ILGPEs was observed by scanning electron microscopy. It was found that the ILGPE had a loosened structure with liquid phase uniformly distributed. The ionic conductivity, lithium ion transference num- bet and electrochemical window were measured by electrochemical impedance spectroscopy, chronoamperometric and linear sweep voltammetry. The ionic conductivity and lithium ion transference number of this ILGPE reached 0.79 mS/cm and 0.71 at room temperature, and the electrochemical window was 0 to 5.1 V vs. Li+/Li. Battery tests indicated that the ILGPE is stable when being operated in Li/LiFePO4 batteries. The discharge capacity maintained at about 135, 117, and 100 mAh/g at 30, 75, and 150 mA/g rates, respectively. The capacity retentions were almost 100% after 100 cycles without little capacity fading.
基金financially supported by the National 863 Program(No.2007AA03Z226)the National Key Program for Basic Research of China(No.2002CB211800 and 2009CB220100).
文摘Composite polymer electrolytes based on mixing soft-segment waterborne polyurethane (WPU) and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMImTFSI) have been prepared and characterized. The addition of BMImTFSI results in an increase of the ionic conductivity. At high BMImTFSI concentration (BMImTFSI/WPU = 3 in weight ratio), the ionic conductivity reaches 4.27 × 10^-3 S/cm at 30 ℃. These composite polymer electrolytes exhibit good thermal and electrochemical stability, which are high enough to be applied in lithium batteries.
基金the Low Carbon Automation Manufacture Innovation Team 2011B81006 for the PhD studentshipNingbo Natural Science Foundation funding 2012A610094
文摘Room temperature ionic liquids(RTILs) are non-volatile organic salts. They may replace conventional coalescing agents in latex coating thus reducing volatile organic compounds(VOCs) emission as well as improving performance of latex coating products such as better thermal stability, conductivity, and antifouling property. The formation of latex coating containing RTILs can be achieved by encapsulation of RTILs inside particles via miniemulsion polymerization. In this study, the role of RTILs and its concentration on stability of miniemulsion during storage and polymerization were investigated. It has been found that, above a critical concentration(10 wt%), adding more RTILs to oil phase may weaken miniemulsion stability during storage as well as polymerization. Such observations were consistent with the zeta potential measurement for miniemulsions prepared at the similar conditions. The results obtained here would be a useful guideline for the development of new waterborne coating products with desirable functions and particle sizes.
文摘Starting from the hydroxylamine (dimethyl amino ethanol, triethanolamine) and 1,3-propane sultone, a series of hydroxyl and sulfonyl dual-functionalized zwitterionic salts and corresponding acidic room temperature ionic liquids have been synthesized. The hydroxyl groups of the synthesized substances were confirmed by the 1H NMR measurement. These zwitterionic salts and ionic liquids may be used for synthesizing other functionalized ionic liquids or ionic liquid-polymer (polyelectrolyte).
基金supported by the Key Research and Development Program of Ningxia Autonomous Region (No.2023BFE01001)Tianjin Science and Technology Program (Nos.22ZYJDSS00060+2 种基金22YDTPJC00920)Program for Tianjin Innovative Research Team in Universities (No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.
文摘In recent years, one of the priority areas of research in chemistry has become the processes carried out in an environment of liquid organic salts, the so-called ionic liquids (ILs), which are assessed as environmentally friendly or “green” alternatives to conventional organic solvents. ILs are non-volatile, highly polar solvents that dissolve many organic, inorganic, and organometallic compounds. Since they have no detectable vapor pressure, ILs are considered as potential substitutes for volatile organic compounds traditionally used as solvents. So-called deep eutectic solvents (DES) is a group of ILs that are liquid mixtures of a number of organic and (or) inorganic components taken in a certain ratio (eutectic or close to eutectic). DES deserve a special attention due to their negligible saturated vapor pressure, availability, low cost, as well as ability to dissolve at relatively high concentration of metal salts, metal oxides and various polymers. Particularly DES based on a mixture of choline chloride with urea (DES-1) or a mixture of choline chloride and adduct of urea with hydrogen peroxide (DES-2) give eutectics that are liquid at ambient temperature and have unusual solvent properties, including an ability to dissolve an animal hair in the presence of low concentration of sodium sulfide or ammonium thioglycolate. It was found that depending on the ratio between DES-1 and DES-2 in the mixture of two Deep Eutectic Solvents and the nature of sulfur-containing additive, the solubility of rabbit hair under used conditions, varies from 51% to 79%.
基金supported by the National Basic Research Program(No.2013CB834506)the National Science Fund for Distinguished Young Scholars(No.21225420)+1 种基金the National Natural Science Foundation of China(Nos.91127047,21474062 and 21404070)Program of Shanghai Subject Chief Scientist(No.15XD1502400)
文摘This work reports a SO2 derivative-detecting and colorful hyperbranched polymeric ionic liquid (HBPIL) vesicle through aqueous self-assembly. By a simple anion-exchange, we achieved the combination of functional small-molecule probe of acid fuchsin with HBPILs. The obtained HBPIL vesicle displayed ultraviolet absorption at 544 nm, and was used as a novel SO2 derivative sensor with high sensitivity and visualization. Due to the functional ion pairs enriching on the surface, the SO32 detection limit of the HBPILs vesicles was as low as 0.138 gmol/L, which was about 1.5 orders of magnitude lower than that of acid fuchsin.
基金financially supported by National Natural Science Foundation of China (No.21701083)。
文摘All solid-state electrolytes have the advantages of good mechanical and thermal properties for safer energy storage,but their energy density has been limited by low ionic conductivity and large interfacial resistance caused by the poor Li~+transport kinetics due to the solid-solid contacts between the electrodes and the solid-state electrolytes.Herein,a novel gel polymer electrolyte(UPP-5)composed of ionic liquid incorporated metal-organic frameworks nanoparticles(IL@MOFs)is designed,it exhibits satisfying electrochemical performances,consisting of an excellent electrochemical stability window(5.5 V)and an improved Li^(+)transference number of 0.52.Moreover,the Li/UPP-5/LiFePO_(4) full cells present an ultra-stable cycling performance at 0.2C for over 100 cycles almost without any decay in capacities.This study might provide new insight to create an effective Li^(+)conductive network for the development of all-solid-state lithium-ion batteries.
基金We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51103035 and 51403055).
文摘A method of in-situ reduction to prepare Au@Pt core-satellite nanopar- ticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size (-2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction ofp- nitrophenol with NaBH4.
基金The authors gratefully acknowledge the valuable help and great support from the Fundamental Research Funds for the Central Universities(Nos.2232018D3-07,2232018D3-24 and 2232019G-02)China Postdoctoral Science Foundation(No.2016M591573)+1 种基金the National Natural Science Foundation of China(Grant No.21404024)Changsha Science and Technology Project.
文摘To enhance the solubility of polyanilines(PANI),polymeric ionic liquid(PIL)was introduced into the polymerization synthesis of PANI with various proportions.The structure and properties of the modified PANIs were characterized by 1H NMR,Fourier transform infrared spectroscopy,thermogravimetric analysis,ultraviolet-visible spectrum,etc.It was found that the obtained PANIs doped with PILs were soluble in various organic solvents such as N,N-dimethyl formamide and acetonitrile.Compared with the pure PANI,the PANIs doped by PILs showed remarkable solubility and their chemical structure and conductivity kept integrated.
基金support of the AMS(Amsterdam Modeling Suite)2020 for free use provided by Software for Chemistry&Materials(SCM)
文摘We like to highlight the extension of COSMO-based models(COSMO RS-FV and COSMO SAC-FV)to the prediction of gas solubility in polymers,including polymerized ionic liquids(PILs)for the first time.To verify the applicability of COSMO-based models,the predicted values for gas solubility in both common polymers(CH_(4)/N_(2)+PEG)and PELs(CO_(2)+P[MATMA][BF_(4)]/P[VATMA][BF_(4)])were evaluated based on previous experimental data.It was confirmed that the COSMO-RS(Klamt)model performs better than the COSMO-SAC model for common polymers,whereas the COSMO-RS(ADF-Lei 2018)exhibits the best predictions for PILs.The moderately accurate predictions of COSMObased models demonstrate the high potential for predicting gas solubility in polymers.
文摘1 Results Classical solutions of electrolytes are obtained by dissolution of salts in molecular solvents. Such systems consist of solvated ions, their charged or neutral combinations and solvent molecules. On the other hand, a salt may be melted down, or in other words 'liquified’, by providing to the system a heat to counterbalance the salt lattice energy. Such a system, called molten salts or ionic liquid (IL), consists of ions and their combinations and is free of any molecular solvent. Relatively hi...
基金We gratefully acknowledge the financial support from NSFC(Nos.21175138,21375132 and 21321003).
文摘A novel polymeric ionic liquid grafted porous polymer monolith has been facilely fabricated for mixed-mode chromatography.The column is prepared from poly(glycidyl methacrylate-co-ethylene dimethacrylate)monolith through hydrolyzation of the epoxy moieties into hydroxyl groups,followed by“grafting from”polymerization of ionic liquid of 1-vinyl-3-butylimidazolium chloride.Successful modification is characterized by scanning electron microscope,infrared spectroscopy,elemental analysis and mercury intrusion porosimetry.The HPLC performance of developed column is evaluated by separating acidic vitamin B analytes,neutral steroids and basic aromatic amines in mixed-mode chromatography on a single column,respectively.The ionic liquid affords the monolith with both enhanced separation ability and improved column efficiency.