期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
The removal of arsenic from (ground)-water by adsorbent loaded in polymeric microspheres
1
作者 FIGOLI A HOINKIS J +6 位作者 CRISCUOLI A FRANZ C DE RYCKE M BLOCK C DEOWAN S A ISLAM R DRIOLI E 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第1期63-66,共4页
Arsenic is a natural tasteless and odourless element,existing in the earth's crust at average levels of between two and five thousands micrograms per liter (parts per million) . Arsenic is highly toxic to humans, ... Arsenic is a natural tasteless and odourless element,existing in the earth's crust at average levels of between two and five thousands micrograms per liter (parts per million) . Arsenic is highly toxic to humans, who are exposed to it primarily from air,food and water. The occurrence of arsenic in groundwater is due to geological composition of soil. High concentrations of arsenic in water are the result of dissolution or desorption of ferric oxides and the oxidation of mineral arsenopyrites. Arsenic in drinking water has an important impact on the human health,especially in the less developed countries. Different methods exist to remove arsenic from aquatic media,and one of them is by adsorption. In this work,the adsorption of both As(III) and As(V) by means of novel microspheres has been investigated. In particular,TiO2 has been embedded into polymeric microspheres PES (PolyEtherSulphone) and PEEK-WC (PolyEtherEther-Ketone) . The main advantages of this encapsulation adsorption material are: no loss of adsorbents into the water stream,easy to be used and scaled-up. 展开更多
关键词 arsenic removal ADSORPTION TIO2 polymeric microspheres
下载PDF
An efficient preparation of porous polymeric microspheres by solvent evaporation in foam phase 被引量:2
2
作者 Yang Yu Guiying Li +5 位作者 Wanqing Han Linhua Zhu Tian Si HongWang Yanlin Sun Yanping He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期409-416,共8页
This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in wate... This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent eva poration method.The method provides outstanding features,including being time-saving,of high-yield and able for continuous production,in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres.It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method.The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microsphere s. 展开更多
关键词 Continuous process Foam phase High-yield Polymer microsphere Solvent evaporation Time-saving
下载PDF
Performance and enhanced oil recovery efficiency of an acid-resistant polymer microspheres of anti-CO_(2) channeling in low-permeability reservoirs
3
作者 Hai-Zhuang Jiang Hong-Bin Yang +5 位作者 Ruo-Sheng Pan Zhen-Yu Ren Wan-Li Kang Jun-Yi Zhang Shi-Long Pan Bauyrzhan Sarsenbekuly 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2420-2432,共13页
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can... CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs. 展开更多
关键词 Low-permeability reservoir Anti-CO_(2)channeling Polymer microsphere Acid resistance
下载PDF
Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups 被引量:7
4
作者 Xing Chen Lu Yang +5 位作者 Wangcheng Zhan Li Wang Yun Guo Yunsong Wang Guanzhong Lu Yanglong Guo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期47-53,共7页
Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated ... Paramagnetic polymer microspheres were synthesized by the inverse suspension polymerizationmethod through polymerization of glycidyl methacrylate,ally glycidyl ether and methacrylamide onthe surface of silica‐coated Fe3O4nanoparticles using N,N’‐methylene‐bis(acrylamide)as across‐linking agent.Penicillin G acylase(PGA)was covalently immobilized on the surface of theparamagnetic microspheres by reacting the amino groups of the PGA molecules with the epoxygroups of the paramagnetic polymer microspheres.The effect of the SiO2coating and the amount ofparamagnetic Fe3O4nanoparticles on the initial activity and the operational stability of the immobilizedPGA was investigated.The results indicated that SiO2played an important role in the polymerization process and paramagnetic polymer microspheres with a SiO2‐coated Fe3O4nanoparticles mass content of7.5%are an optimal support material for PGA immobilization.Immobilized PGA on the paramagnetic polymer microspheres shows a high initial activity of430U/g(wet)and retains99%of its initial activity after recycling10times.Furthermore,immobilized PGA exhibits high thermal stability,pH stability and excellent reusability,which can be rapidly recycled by the aid of magnet.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Paramagnetic polymer microspheres Epoxy groups Penicillin G acylase Covalent bonding IMMOBILIZATION
下载PDF
Preparation and Characterization of Non-porous Superparamagnetic Microspheres with Epoxy Groups by Dispersion Polymerization 被引量:4
5
作者 马志亚 官月平 +1 位作者 刘先桥 刘会洲 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第2期239-243,共5页
Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with ol... Non-porous superparamagnetic polymer microspheres with epoxy groups were prepared by dispersion polymerization of glycidyl methacrylate (GMA) in the presence of magnetic iron oxide (Fe3O4) nanoparticles coated with oleic acid. The polymerization was carried out in the ethanol/water medium using polyvinylpyrrolidone (PVP) and 2,2’-azobisisobutyronitrile (AIBN) as stabilizer and initiator, respectively. The magnetic microspheres obtained were characterized with scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy (FTIR). The results showed that the magnetic microspheres had an average size of-1μm with superparamagnetic characteristics. The saturation magnetization was found to be 4.5emu.g-1. There was abundance of epoxy groups with density of 0.028 mmol·g^-1 in microspheres. The magnetic PGMA microspheres have extensive potential uses in magnetic bioseparation and biotechnology. 展开更多
关键词 polyglycidyl methacrylate magnetic polymer microsphere dispersion polymerization epoxy groups BIOSEPARATION
下载PDF
SYNTHESIS OF MONODISPERSE HOLLOW POLYMER MICROSPHERES WITH FUNCTIONAL GROUPS BY DISTILLATION PRECIPITATION POLYMERIZATION 被引量:4
6
作者 杨新林 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第2期277-285,共9页
Monodisperse hollow polymer microspheres having various functional groups on the shell-layer, such as carboxylic acid, pyridyl and amide, were prepared by two-stage distillation precipitation polymerization in neat ac... Monodisperse hollow polymer microspheres having various functional groups on the shell-layer, such as carboxylic acid, pyridyl and amide, were prepared by two-stage distillation precipitation polymerization in neat acetonitrile in the absence of any stabilizer or additive, during which monodisperse poly(methacrylic acid) (PMAA) afforded from the first-stage polymerization was utilized as the seeds for the second-stage polymerization. The shell layer with different functional groups was formed during the second-stage copolymerization of either divinylbenzene (DVB) or ethyleneglycol dimethacrylate (EGDMA) as crosslinker and the functional comonomers, in which the hydrogen-bonding interaction between the carboxylic acid group of PMAA core and the functional groups of the corresponding comonomers, including carboxylic acid, amide and pyridyl, played an essential role for the formation of monodisperse core-shell functional microspheres. The hollow polymer microspheres were then developed after the subsequent removal of PMAA cores by dissolution in ethanol under basic condition. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were used to determine the morphology of the resultant PMAA core, functional core-shell microspheres and the corresponding hollow polymer microspheres with different functional groups. FT-IR spectra confirmed the successful incorporation of the various functional groups on the shell layer of the hollow polymer microspheres. 展开更多
关键词 Hollow polymer microsphere Distillation precipitation polymerization Functional microsphere Hydrogen- bonding interaction.
下载PDF
A review of recent progress in preparation of hollow polymer microspheres 被引量:3
7
作者 Wei Bin Wang Shujun +3 位作者 Song Hongguang Liu Hongyan Li Jie Liu Ning 《Petroleum Science》 SCIE CAS CSCD 2009年第3期306-312,共7页
The preparation methods of hollow polymer microspheres both at home and abroad are summarized, and their preparation mechanisms and developmental states are presented. These methods include the liquid droplet method, ... The preparation methods of hollow polymer microspheres both at home and abroad are summarized, and their preparation mechanisms and developmental states are presented. These methods include the liquid droplet method, dried-gel droplet method, self-assembly method, microencapsulation method, emulsion polymerization method and the template method. Hollow polystyrene microspheres are the most extensively studied in the research of hollow polymer microspheres. Through comparison of the advantages and disadvantages of different preparation methods, it is concluded that microencapsulation method is most suitable for preparing polystyrene hollow microspheres. 展开更多
关键词 Preparation methods hollow polymer microspheres preparation mechanism polystyrene hollow microspheres microencapsulation method
下载PDF
PREPARATION OF MONODISPERSE CROSSLINKED POLYMER MICROSPHERES HAVING CHLOROMETHYL GROUP BY DISTILLATIONPRECIPITATION POLYMERIZATION 被引量:2
8
作者 Shu-FengLi Xin-LinYang Wen-QiangHuang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期197-202,共6页
Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene)(poly(CMSt-co-DVB))microsphereswere prepared by distillation-precipitation copolymerization of chloromethylstyrene(CMSt)and divinylbenzene(DVB)inneat... Monodisperse crosslinked poly(chloromethylstyrene-co-divinylbenzene)(poly(CMSt-co-DVB))microsphereswere prepared by distillation-precipitation copolymerization of chloromethylstyrene(CMSt)and divinylbenzene(DVB)inneat acetonitrile.The polymer particles had clean surfaces due to the absence of any added stabilizer.The size of the particlesranges from 2.59 μm to 3.19 μm and with mono-dispersity around 1.002-1.014.The effects of monomer feed incopolymerization on the microsphere formation were described.The polymer microspheres were characterized by SEM andchlorinity elemental analysis. 展开更多
关键词 Chloromethylstyrene DIVINYLBENZENE Distillation-precipitation polymerization CROSSLINKED MONODISPERSE Polymer microspheres Chlorinity.
下载PDF
PREPARATION OF POLYMER MICROSPHERES WITH PYRIDYL GROUP AND THEIR STABILIZED GOLD METALLIC COLLOIDS 被引量:1
9
作者 Shu-ning Li Xin-lin Yang Wen-qiang Huang 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第6期555-563,共9页
Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) ... Narrow disperse poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (poly(EGDMA-co-4-VPy)) microspheres were prepared by distillation-precipitation copolymerization of ethyleneglycol dimethacrylate (EGDMA) and 4-vinylpyridine (4-VPy) with 2,2'-azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile. The polymer microspheres containing pyridyl group were then utilized as stabilizer for gold metallic colloids with the diameter around 7 nm, which were prepared by the in situ reduction of gold chloride trihydrate with sodium borohydride through the coordination of the pyridyl group on the gel layer and surface of the microsphere with the gold metallic nano-particles. The catalytic properties of the pyridyl- functionalized microsphere-stabilized gold metallic colloids and the behavior of the stabilized-catalyst for the recycling were investigated with reduction of 4-nitrophenol to 4-aminophenol as a model reaction. 展开更多
关键词 Polymer microsphere Distillation-precipitation polymerization Pyridyl group Gold metallic colloids Catalysis.
下载PDF
Preparation and performance of fluorescent polyacrylamide microspheres as a profile control and tracer agent 被引量:1
10
作者 Wan-Li Kang Lei-Lei Hu +3 位作者 Xiang-Feng Zhang Run-Mei Yang Hai-Ming Fan Jie Geng 《Petroleum Science》 SCIE CAS CSCD 2015年第3期483-491,共9页
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov... Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack. 展开更多
关键词 Inverse suspension polymerization Fluorescence Polyacrylamide microsphere Narrow sizedistribution - Profile control performance
下载PDF
Local immunotherapy with interleukin - 2 delivered from biodegradable polymer microspheres combined with interstitial chemotherapy: a novel treatment for experimental malignant glioma.
11
作者 Rhines LD DiMeco F +4 位作者 Lawson HC Tyler BM Hanes J Olivi A Brem H 《中国神经肿瘤杂志》 2003年第2期81-81,共1页
OBJECTIVE:Local delivery of carmustine(BCNU)from biodegradablepolymers prolongs survival against experi-mental brain tumors.Moreover,paracrine administration of interleukin-2(IL-2)has been shown to elicit apotent anti... OBJECTIVE:Local delivery of carmustine(BCNU)from biodegradablepolymers prolongs survival against experi-mental brain tumors.Moreover,paracrine administration of interleukin-2(IL-2)has been shown to elicit apotent antitumor immune response and to improve survival in animal brain tumor models.We report the use of anovel polymeric microsphere delivery vehicle to release IL-2.We demonstrate both in vitro release of cytokinefrom the microspheres and histological evidence of the inflammatory response elicited by IL-2 released from themicrospheres in the rat brain.Thees microspheres are used to deliver IL-2,and biodegradable polymer wafers 展开更多
关键词 BCNU Local immunotherapy with interleukin from delivered from biodegradable polymer microspheres combined with interstitial chemotherapy a novel treatment for experimental malignant glioma for with
下载PDF
An efficient synthesis of ampicillin on magnetically separable immobilized penicillin G acylase 被引量:6
12
作者 Ping Xue Xiao Dan Song Xue Rong Cao 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第7期765-768,共4页
Penicillin G acylase(PGA) was immobilized on the magnetic hydrophilic polymer microspheres with average pore size of 17.1 nm,specific surface area of 128.2 m2/g and saturate magnetization of 6.4 emu/g.The 96.7%ampicil... Penicillin G acylase(PGA) was immobilized on the magnetic hydrophilic polymer microspheres with average pore size of 17.1 nm,specific surface area of 128.2 m2/g and saturate magnetization of 6.4 emu/g.The 96.7%ampicillin yield with 1.60 of the synthesis/hydrolysis(S/H) ratio from 6-aminopenicillanic acid(6-APA) and D-(-)-alpha-phenylglycine methyl ester(D-PGME) can be achieved using the resultant magnetic biocatalyst in ethylene glycol,where only 82.1%yield with 1.40 of the S/H ratio was obtained using the free PGA under the identical reaction conditions.The immobilized PGA can be separated magnetically and recycled for five times without obvious loss of its catalytic activity. 展开更多
关键词 Immobilized penicillin G acylase Magnetic polymer microspheres Ampicillin synthesis REUSABILITY
下载PDF
Preparation of Dysprosium Ferrite/Polyacrylamide Magnetic Composite Microsphere and Its Characterization 被引量:3
13
作者 雄泽英博 王志峰 +3 位作者 周兰香 张红 李幼荣 张明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期262-265,共4页
Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure,... Using the technique of microemulsion polymerization with nano-reactor, dysprosium ferrite/polyacrylamide magnetic composite microsphere was prepared by one-step method in a single inverse microemulsion. The structure, average particle size, morphology of composite microsphere were characterized by FTIR, XRD, TEM and TGA. The magnetic responsibility of composite microsphere was also investigated. The results indicate that the magnetic composite microsphere possess high magnetic responsibility and suspension stability. 展开更多
关键词 dysprosium ferrite POLYACRYLAMIDE composite microsphere magnetic polymer microsphere rare earths
下载PDF
From the microspheres to scaffolds:advances in polymer microsphere scaffolds for bone regeneration applications
14
作者 Shuhao Yang Haoming Wu +11 位作者 Chao Peng Jian He Zhengguang Pu Zhidong Lin Jun Wang Yingkun Hu Qiao Su Bingnan Zhou Xin Yong Hai Lan Ning Hu Xulin Hu 《Biomaterials Translational》 2024年第3期274-299,共26页
The treatment and repair of bone tissue damage and loss due to infection,tumours,and trauma are major challenges in clinical practice.Artificial bone scaffolds offer a safer,simpler,and more feasible alternative to bo... The treatment and repair of bone tissue damage and loss due to infection,tumours,and trauma are major challenges in clinical practice.Artificial bone scaffolds offer a safer,simpler,and more feasible alternative to bone transplantation,serving to fill bone defects and promote bone tissue regeneration.Ideally,these scaffolds should possess osteoconductive,osteoinductive,and osseointegrative properties.However,the current first-generation implants,represented by titanium alloys,have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair.This has led to increased research on second and third generation artificial bone scaffolds,which focus on loading bioactive molecules and cells.Polymer microspheres,known for their high specific surface areas at the micro-and nanoscale,exhibit excellent cell and drug delivery behaviours.Additionally,with their unique rigid structure,microsphere scaffolds can be constructed using methods such as thermal sintering,injection,and microsphere encapsulation.These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour,aiding in bone repair within a three-dimensional network structure.This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair,focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts,aimed at advancing research in bone repair. 展开更多
关键词 biomimetic scaffolds bone tissue engineering polymer microspheres regenerative medicine
原文传递
Preparation and Properties of Magnetic-fluorescent Microporous Polymer Microspheres 被引量:2
15
作者 ZOU Xiaohu WEI Zhizhi +2 位作者 DU Jing WANG Xiaotao ZHANG Gaowen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第4期684-690,共7页
Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by inco... Microporous microspheres can be used as functional nanomaterial carriers for their microporous structure and higher specific surface area. In this study, magnetic fluorescent polymer microspheres were prepared by incorporating Fe304 nanoparticles and CdSe/ZnS quantum dots(QDs) into hyper-crosslinked microporous polymer micro- spheres(HCMPs) via the in situ coprecipitation method and swelling-diffusion. The HCMPs predominantly have mi- cropores, and their specific surface area is as high as 703.4 m2/g. The magnetic-fluorescent microspheres maintain the superparamagnetic behavior of Fe304, and the saturation magnetization reaches 38.6 A.m2/kg. Moreover, the composite microspheres exhibit an intense emission peak at 530 nm and achieve good fluorescence. 展开更多
关键词 Microporous polymer Magnetic-fluorescent polymer microsphere Hyper-crosslinking SUPERPARAMAGNETISM Quantum dot
原文传递
Polymeric microsphere injection in large pore-size porous media 被引量:3
16
作者 Dongqing Cao Ming Han +1 位作者 Jinxun Wang Amar J.Alshehri 《Petroleum》 CSCD 2020年第3期264-270,共7页
High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polym... High water-cut has become a worldwide challenge for oil production.It requires extensive efforts to process and dispose.This entails expanding water handling facilities and incurring high power consumption costs.Polymeric microsphere injection is a cost-effective way to deal with excessive water production from subterranean formations.This study reports a laboratory investigation on polymeric microsphere injection in a large volume to identify its in-depth fluid diversion capacity in a porous media with large pore/particle size ratio.The performance of polymeric microsphere injection was evaluated using etched glass micromodels based on the pore network of a natural carbonate rock,which were treated as water-wet or oil-wet micromodels.Waterflooding was conducted to displace oil at reservoir temperature of 95°C,followed by one pore volume of polymeric microsphere injection.Three polymeric microsphere samples with median particle size of 0.05,0.3,and 20μm were used to investigate the impact of particle size of the polymeric microspheres on incremental oil production capacity.Although the polymeric microspheres were much smaller than the pores,additional oil production was observed.The incremental oil production increased with increasing polymeric microsphere concentration and particle size.As a comparison,polymeric microsphere solutions were injected into oil-wet and water-wet micromodels after waterflooding.It was observed that the oil production in oil-wet micromodel was much higher than that in water-wet micromodel.The wettability of micromodels affected the distribution patterns of the remaining oil after waterflooding and further dominated the performance of the microsphere injection.The study supports the applicability of microsphere injection in oil-wet heterogeneous carbonates. 展开更多
关键词 High water-cut polymeric microsphere injection Etched glass micromodel Pore/particle size ratio WETTABILITY Heterogeneous carbonate reservoir Conformance control Oil production
原文传递
Preparation and characterization of conducting polymer-coated thermally expandable microspheres 被引量:9
17
作者 Shu-Ying Chen Zhi-Cheng Sun +2 位作者 Lu-Hai Li Yong-Hao Xiao Yan-Min Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第3期658-662,共5页
The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. M... The thermally expandable microspheres(TEMs) were prepared via suspension polymerization with acrylonitrile(AN), methyl methacrylate(MMA) and methyl acrylate(MA) as monomers and n-hexane as the blowing agent. Meanwhile, a novel type of functional and conductive thermal expandable microsphere was obtained through strongly covering the surface of microsphere by conductive polymers with the mass loading of 1.5%. The optimal conditions to prepare high foaming ratio and equally distributed microcapsules were investigated with AN-MMA-MA in the proportion of 70%/20%/10%(m/m/m), and 25 wt% of n-hexane in oil phase. The further investigation results showed that the unexpanded TEMs were about 30 μm in diameter and the maximum expansion ratio was nearly 125 times of original volume. The polypyrrole(PPy) was smoothly coated on the surface of the TEMs and the expansion property of PPy-coated TEMs was almost the same as the uncoated TEMs. Moreover, the structure and expanding performance of TEMs and PPy-coated TEMs were characterized by scanning electron microscopy(SEM), laser particle size analyzer and dilatometer(DIL). 展开更多
关键词 Thermally expandable microspheres Suspension polymerization Conducting polymer Preparation Characterization Particle size
原文传递
PREPARATION OF SILICA/POLY(METHACRYLIC ACID)/POLY(DIVINYLBENZENE-CO-METHACRYLIC ACID) TRI-LAYER MICROSPHERES AND THE CORRESPONDING HOLLOW POLYMER MICROSPHERES WITH MOVABLE SILICA CORE 被引量:1
18
作者 杨新林 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2010年第5期807-817,共11页
Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corr... Hollow poly(divinylbenzene-co-methacrylic acid) (P(DVB-co-MAA)) microspheres were prepared by the selective dissolution of the non-crosslinked poly(methacrylic acid) (PMAA) mid-layer in ethanol from the corresponding silica/PMAA/P(DVB-co-MAA) tri-layer hybrid microspheres, which were afforded by a three-stage reaction. Silica/PMAA core-shell hybrid microspheres were prepared by the second-stage distillation polymerization of methacrylic acid (MAA) via the capture of the oligomers and monomers with the aid of the vinyl groups on the surface of 3-(methacryloxy)propyl trimethoxysilane (MPS)-modified silica core, which was prepared by the Stober hydrolysis as the first stage reaction. The tri-layer hybrid microspheres were synthesized by the third-stage distillation precipitation copolymerization of functional MAA monomer and divinylbenzene (DVB) crosslinker in presence of silica/PMAA particles as seeds, in which the efficient hydrogen-bonding interaction between the carboxylic acid groups played as a driving force for the construction of monodisperse hybrid microspheres with tri-layer structure. The morphology and the structure of silica core, silica/PMAA core-shell particles, the tri-layer hybrid microspheres and the corresponding hollow polymer microspheres with movable silica cores were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). 展开更多
关键词 Tri-layer hybrid microspheres Hollow polymer microspheres with movable core Distillation precipitation polymerization.
原文传递
Preparation of porous polyimide microspheres by thermal degradation of block copolymers 被引量:3
19
作者 Li Wang Jianjun Lu +2 位作者 Miaoqing Liu Li Lin Jingjing Li 《Particuology》 SCIE EI CAS CSCD 2014年第3期63-70,共8页
A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide deri... A new preparation method has been developed for thermally stable porous polyimide microspheres. Porous polyimide microspheres were prepared using trib]ock copolymers that consisted of a thermally stable polyimide derived from pyromellitic dianhydride/4,4'-oxydianiline as the continuous phase and a thermally labile polyether as the dispersed phase. Spheres of copolymers were generated in a nonaqueous emulsion and then gradually heated to complete the imidization to form a microphase-separated structure. Subsequently, thermal treatment at a slightly reduced pressure removed the labile blocks and produced pores. Under suitable decomposition conditions, the pore size of the porous polyimide was in the range of 200-400nm. 展开更多
关键词 Block copolymer sphere Microphase separation Polyimide Porous microsphere Porous polymer
原文传递
Effects of Shell Composition, Dosage and Alkali Type on the Morphology of Polymer Hollow Microspheres 被引量:1
20
作者 Wei Deng Hua-Chao Guo +1 位作者 Wei-Li Yu Cheng-You Kan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2018年第1期43-48,共6页
Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali t... Polymer hollow microspheres were prepared by performing alkali treatment on the multilayer core/shell polymer latex particles containing carboxyl groups. Effects of the shell composition and dosage as well as alkali type on the morphology of the microspheres were investigated. Results showed that in comparison with acrylonitrile(AN) and methacrylic acid(MAA), using butyl acrylate(BA) as the shell co-monomer decreased the glass transition temperature(T_g) of shell effectively and was beneficial to the formation of uniform and big hollow structure. Along with the increase of the shell dosage, the alkali-treated microspheres sequentially presented porous and hollow morphology, and the size of microspheres increased, while the hollow diameter increased first and then decreased, and the maximum hollow ratio reached 39.5%. Furthermore, the multilayer core/shell microspheres had better tolerance to NH_3·H_2O than to NaOH. When the molar ratio of alkali to methacrylic acid(MR_(alkali/acid)) for Na OH ranged from 1.15 to 1.30 or MRalkali/acid for NH_3·H_2O ranged from 1.30 to 2.00, the regular polymer hollow microspheres could be obtained. 展开更多
关键词 Hollow microspheres Core-Shell polymer Alkali treatment Morphology
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部