PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic ...PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic thin film transistors), and its dielectric constant is around 3.5-10. For OTFTs operating at lower voltage, it is desirable to increase the dielectric constant. Here, we report a technique to incorporate upto 50 wt% of TiO2 nanoparticles (15-25 nm) in PVA to increase its dielectric constant. Rutile phase of TiO2 is used, because of its higher dielectric constant (e = 114) compared to anatase phase (E = 31). We have made inks containing 10 and 50 wt% (of PVA) TiO2 nanoparticles, which is stable upto six months. PVA-TiO2 dispersions and PVA (without TiO2) were spin coated on indium tin oxide coated polyethylene terephthalate substrate. Film structure was studied using SEM (scanning electron microscopy). Absorption study of the films confirms presence of TiO2 nanoparticles. M-I-M capacitors were fabricated by thermally evaporating aluminium on top of the dielectric films. We observed enhancement in dielectric constant by a factor of 2 for PVA containing 50 wt% TiO2 in comparison to PVA's dielectric constant. There is no concomitant increase in the leakage current.展开更多
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and...The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.展开更多
The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the...The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.展开更多
A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages...A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.展开更多
This study presents an easily prepared film based on alkaline starch-polyvinyl alcohol hybrid and lignin fiber as an additive(SPL film).The SPL film was prepared under acidic conditions through a polycondensation reac...This study presents an easily prepared film based on alkaline starch-polyvinyl alcohol hybrid and lignin fiber as an additive(SPL film).The SPL film was prepared under acidic conditions through a polycondensation reaction of PVA and a mixture incorporating alkaline starch and lignin fiber from agriculture or forest source.The examination using scanning electron microscopy(SEM)showed that the surface of SPL film was smooth and the lignin fiber had good compatibility within the film hybrid.Electrospray ionization mass spectroscopy(ESI-MS)and fourier transform infrared(FTIR)investigations indicated that alkaline starch and lignin fiber reacted with PVA under acidic conditions and that–CH_(2)–O–groups were involved in the cross-linking of the SPL system.In addition,the SPL film exhibited only 4%light transmittance,which effectively reduces the ultraviolet and visible light(UV-Vis)penetration,along with good performance when exposed to thermal degradation,in which the mass loss reached around 60%at 400℃.More-over,the SPL film acquired excellent tensile strength,which is much higher than that of PVA-lignin(PL)composite film.展开更多
Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the me...Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.展开更多
文摘PVA (Polyvinyl Alcohol) is a water soluble organic dielectric, easily solution processed to fabricate films by spin coating, dip coating or inkjet printing. It has been used as a dielectric layer in OTFTs (organic thin film transistors), and its dielectric constant is around 3.5-10. For OTFTs operating at lower voltage, it is desirable to increase the dielectric constant. Here, we report a technique to incorporate upto 50 wt% of TiO2 nanoparticles (15-25 nm) in PVA to increase its dielectric constant. Rutile phase of TiO2 is used, because of its higher dielectric constant (e = 114) compared to anatase phase (E = 31). We have made inks containing 10 and 50 wt% (of PVA) TiO2 nanoparticles, which is stable upto six months. PVA-TiO2 dispersions and PVA (without TiO2) were spin coated on indium tin oxide coated polyethylene terephthalate substrate. Film structure was studied using SEM (scanning electron microscopy). Absorption study of the films confirms presence of TiO2 nanoparticles. M-I-M capacitors were fabricated by thermally evaporating aluminium on top of the dielectric films. We observed enhancement in dielectric constant by a factor of 2 for PVA containing 50 wt% TiO2 in comparison to PVA's dielectric constant. There is no concomitant increase in the leakage current.
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
文摘The millimeter-scale capsules with controllable morphology,ultra-low permeability and excellent mechanical stability were fabricated by millifluidics.Viscosity of inner phase was adjusted to control the morphology and properties of the capsules.In detail,as the concentration of polyvinyl alcohol(PVA)increased from 0 to 8% in the inner phase of the capsules,the diameter of capsules decreased from 3.33 ± 0.01mm to 2.97 ± 0.01 mm,the shell thickness of capsules decreased from 0.183 ± 0.004 mm to 0.155 ± 0.003 mm.While the capsules had round shape and high sphericity.Notably,the capsules with 2% PVA in the inner phase had remarkably decreased water permeability and good morphological stability.Specifically,the end-time of water losing of the capsules was up to 49 days,while the dehydrated capsules maintained spherical appearance,and crushing force of the capsules was up to 13.73 ± 0.79 N,which ensured stability during processing and transportation.This research provides a new strategy for stable encapsulation of small molecules.
基金Project supported by the National Natural Science Foundation of China(No.50327802,50325824,50678089).
文摘The microbial immobilization method using polyvinyl alcohol (PVA) gel as an immobilizing material was improved and used for entrapment of activated sludge. The oxygen uptake rate (OUR) was used to characterize the biological activity of immobilized activated sludge. Three kinds of PVA-immobilized particles of activated sludge, that is, PVA-boric acid beads, PVA-sodium nitrate beads and PVA-orthophosphate beads were prepared, and their biological activity was compared by measuring the OUR value. The bioactivity of both autotrophic and heterotrophic microorganisms of activated sludge was determined using different synthetic wastewater media (containing 250 mg/L COD and 25 mg/L NH4^+ -N). The experimental results showed that the bioactivity and stability of the three kinds of immobilized activated sludge was greatly improved after activation. With respect of the bioactivity and the mechanical stability, the PVA-orthophosphate method may be a promising and economical technique for microbial immobilization.
文摘A mass flow matching model(MFMM)was established for studying the stable status of solution electrospinning.The study of the solution droplet status at the needle tip focused on various combinations of applied voltages and injection rates to figure out their influence on steadily fabricating polyvinyl alcohol(PVA)nanofibers prepared from PVA spinning solutions with two different mass fractions(10%and 16%).The results revealed that during the stable electrospinning,the influence resulted from the change of the injection rate approximately canceled out the impact brought by adjusting the applied voltage,leading to almost the same morphology as that of the PVA nanofibers.And the mass fraction of PVA in the spinning solution dominated the structure and the diameter distribution of the electrospun nanofibers.Under stable electrospinning conditions,the composite membrane was produced by depositing PVA nanofibers on the polyethylene terephthalate(PET)nonwoven substrate for an air filtration test.Furthermore,the prepared composite membrane exhibited a high air filtration efficiency(99.97%)and a low pressure drop(120 Pa)for 300-500 nm neutralized polystyrene latex(PSL)aerosol particles,demonstrating its potential as an alternative for a variety of commercial applications in air filtration.
基金supported by the Yunnan Provincial Natural Science Foundation(Grant No.202101AT070038)Yunnan Agricultural Joint Fund(202101BD070001-105)+1 种基金China Scholarship Council,and,as well as the Yunnan Provincial Youth Top Talent Project(Grant No.YNWR-QNBJ-2020-166)and Middle-Age Reserve Talents of Academic and Technical Leaders(2019HB026)the 111 Project(D21027).The authors would like to thank Bo-Chen and Shudi-Ren from Shiyanjia Lab(www.shiyanjia.com)for the partly measurements.
文摘This study presents an easily prepared film based on alkaline starch-polyvinyl alcohol hybrid and lignin fiber as an additive(SPL film).The SPL film was prepared under acidic conditions through a polycondensation reaction of PVA and a mixture incorporating alkaline starch and lignin fiber from agriculture or forest source.The examination using scanning electron microscopy(SEM)showed that the surface of SPL film was smooth and the lignin fiber had good compatibility within the film hybrid.Electrospray ionization mass spectroscopy(ESI-MS)and fourier transform infrared(FTIR)investigations indicated that alkaline starch and lignin fiber reacted with PVA under acidic conditions and that–CH_(2)–O–groups were involved in the cross-linking of the SPL system.In addition,the SPL film exhibited only 4%light transmittance,which effectively reduces the ultraviolet and visible light(UV-Vis)penetration,along with good performance when exposed to thermal degradation,in which the mass loss reached around 60%at 400℃.More-over,the SPL film acquired excellent tensile strength,which is much higher than that of PVA-lignin(PL)composite film.
基金supported by the National Natural Science Foundation of China (41731281,42071078)the National Key Basic Research Program of China (No.2012CB026104)Science and Technology Project of Qinghai,China (2021-GX-121).
文摘Silty clay is widely used as subgrade filler in cold regions,which suffer from frost heave in winter and mud pumping in spring.In this study,polyvinyl alcohol(PVA)and polypropylene(PP)fiber were used to improve the mechanical and frost heave behavior of silty clay in cold regions,and the direct shear test and one-dimensional frost heave test were employed in studying improvement effects.Moreover,improvement mechanisms of PVA and PP fiber were analyzed based on test results.The main findings are as follows.(1)Both PP and PVA can heighten the strength of silty clay and suppress frost heave,but the PVA solution has a more decisive influence on improving mechanical properties than PP fiber.(2)The improvement mechanism of the PVA solution is cementing.The improvement effect of 2%PVA solution is the best,which can increase the shear strength by approximately 40%–60%at different stress levels and decrease the frost heave ratio from 0.89%to 0.16%at optimal water content.(3)For 2%PVA improved samples,0.25%PP fiber can further increase soil cohesion by approximately 20–30 kPa at different stress levels and further decrease the frost heave ratio from 0.16%to 0.07%at optimal water content.The improvement effect is neglectable when the PP fiber content exceeds 0.25%.Overall,2%PVA with 0.25%PP fiber is the optimum combination to improve silty clay in cold regions.