The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean an...The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.展开更多
Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and...Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.展开更多
In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis af...In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.展开更多
The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the requir...The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.展开更多
Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30...Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.展开更多
Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functiona...Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.展开更多
The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experim...The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.展开更多
基金funded by the Science and Technology Project of Henan Province(202102310593)and Science and Technology Project of Kaifeng City(2002003).
文摘The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body.Hence,producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands.In this study,flame-retardant rubber seed oil-based plasticize(FRP)was prepared via epoxidation reaction and ring opening addition reactions,which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer.When DOP was replaced with FRP,the torque of PVC blends increased from 11.4 to 18.4 N⋅m,the LOI value increased from 24.3%for PVC-FRP-0%to 33.1%for PVC-FRP-20.The THR value diminished from 39 MJ/m^(2)(pertaining to PVC-FRC-0)to 22 MJ/m^(2)Tg increased from 23°C to 47°C,the weight loss of plasticized PVC blends significantly reduced from 22.6%to 2.8%in leaching tests.The study provided a new way to prepare flame retardant plasticizer using rubber seed oil as raw material.
基金funded by the Scarce and Quality Economic Forest Engineering Technology Research Center(2022GCZX002)the Key Lab.of Biomass Energy and Material,Jiangsu Province(Grant No.JSBEM-S-202305).
文摘Plasticizers are essential additives in the processing of polyvinyl chloride(PVC),with phthalate plasticizers being widely used.However,these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly,necessitating the exploration of eco-friendly bio-based alternatives.In this study,Camellia oleifera seed oil,a specialty resource in China,was utilized as a raw material and reacted with 4,4′-Methylenebis(N,N-diglycidylaniline)(AG-80)to synthesize Phenyl Camellia seed Oil Ester(PCSOE).PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations,with the conventional plasticizer dioctyl phthalate(DOP)serving as a control.Experimental results demonstrate that PSCOE-plasticized PVC films exhibit enhanced hydrophilicity,tensile strength,and thermal stability compared to DOP-modified PVC films.The contact angle of PSCOE-plasticized PVC films ranges from 66.26°to 78.48°,which is generally lower than the contact angle of DOP-modified PVC films at 78.40°,indicating improved hydrophilicity due to the modification with PCSOE.The tensile strength of PSCOE-plasticized PVC films ranges from 17.73 to 20.17 MPa,all surpassing the value of 16.41 MPa for DOP-modified PVC films.Moreover,the temperatures corresponding to 5%,10%,and 50%weight loss for PVC samples modified with PCSOE are higher than those for DOP.Hence,PCSOE presents a viable alternative to DOP as a plasticizer for PVC materials.
基金Funding Statement:The authors express their gratitude for the financial support from the National Natural Science Foundation of China(32101475)the Yuemu Technology Plan Project(YMKJ202201).
文摘In this study,as the plasticizer,Camellia oleifera seed-oil-based cyclohexyl ester(COSOCE)was prepared by the reaction of cyclohexene oxide and refined C.oleifera seed oil(RCOSO)obtained by acidification hydrolysis after saponification.In addition,the structure of the target product was confirmed by Fourier transform infrared(FTIR)spectroscopy,nuclear magnetic resonance(NMR)spectroscopy,and Raman spectroscopy.COSOCE was used as plasticizer-modified polyvinyl chloride(PVC)membranes.The structure of the COSOCE-modified PVC membranes were characterized by Raman spectroscopy and scanning electron microscopy(SEM).The properties of the COSOCE-modified PVC membrane were characterized by contact angle measurements,universal testing machine,thermogravimetric analysis(TGA),and differential scanning calorimetry(DSC).The results revealed that(1)The COSOCE-modified PVC membranes exhibit a good microscopic morphology.Combined with energy-dispersive X-ray spectroscopy(EDS)and contact angle measurement results,the COSOCE-modified PVC membranes are confirmed to be a hydrophilic material.(2)The modified PVC membrane with 60%COSOCE exhibited the best mechanical properties.The tensile strength reached 23.56±2.94 MPa.(3)COSOCE-modified PVC material exhibited better thermal stability,with a loss rate of less than 75%at the end of the first decomposition stage.Compared with that of the dioctyl-phthalate(DOP)-modified PVC membrane,the initial decomposition temperature of PVC was increased by 1.17°C–8.17°C,and the residual rate was increased by 0.67%–5.75%.The carbon–carbon double bond in the COSOCE molecular structure can remove the free radicals generated during the degradation of PVC material and slow down the decomposition rate of PVC.In addition,the double bond can be cross-linked partially with the PVC molecular chain containing the conjugated polyene structure,thereby increasing the movement resistance of the PVC molecular chain segment.Hence,COSOCE can replace DOP as a PVC plasticizer.
基金the National Natural Science Foundation of China(21905117)Guangxi Key Laboratory of Chemistry and Engineering of Forest Products(GXFK2203)and the Natural Science Foundation of Jiangsu Province(BK20201128)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The additives present in polyvinyl chloride(PVC)materials are the major source of organic by-products during PVC degradation.The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing.However,these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC.This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process.In this work,two kinds of grafted PVC samples(tungoil derivative grafted PVC and Atz grafted PVC,abbreviated as P-GT4 and P-AZ3)were synthesized by chemical grafting of 3-amino-1,2,4-triazole(Atz)and tung-oil derivative on PVC,respectively.These two PVC samples were then blended at different mass ratios to obtain hybrid PVC materials with excellent plasticization,thermal stability and migration resistance ability.Differential scanning calorimetry(DSC),discoloration,Congo red test and thermogravimetric analysis(TGA)showed that when the mass ratio of P-GT4 to P-AZ3 in the mixed PVC resin was 1:3,the resulting P1:3-GT4-AZ3(P4)presented the best plasticization and thermal stability.The kinetics of thermal decomposition showed that the activation energy of P4 was much higher than that of the reference material[PVC/DOTP/CaSt2/ZnSt2,PVC/CZ41 for short]at mass lossα=20%and 80%.In addition,the leaching test showed that P4 material possessed excellent migration resistance ability.
基金Project(50378062) supported by the National Natural Science Foundation of ChinaProject(09JCYBJC08100) supported by the Natural Science Foundation of Tianjin City,China
文摘Thermogravimetric study of medical transfusion tube (MTT) waste containing polyvinyl chloride (PVC) was carried out using the thermogravimetric analyser (TGA) with N2, at different heating rates of 5, 10, 20, 30, 50 ℃/min. The purpose is to obtain pyrolysis characteristics and kinetic parameters of medical waste. The experimental results indicate that the pyrolysis behavior of the MTT sample is in agreement with its main ingredient of PVC, appearing two stair stepping stages. The influence of the additives in MTT on pyrolysis behavior was also revealed, which could improve MTT pyrolysis at lower temperature in the first stage, and cause obvious unsmoothness and asymmetry of the second DTG peak. Four n-order kinetic models of Coats-Redfern, Ozawa, Kissinger and Freeman-carroll were used to get the kinetic parameters. Furthermore, a novel "two-step four-reaction model" was established to simulate the whole continuous process. The different methods and the kinetic parameters thus obtained were discussed and compared with each other in literatures. The reasons of deviation among kinetic values were tried to be elucidated. The new established model could more satisfactorily describe the pyrolysis process of MTT, being more mechanistic and conveniently serving for the engineering.
基金Funded by the National Natural Science Foundation of China(Nos.21173266,21473250)the Fundamental Research Funds for the Central Universities(No.11XNJ021)the Research Funds of Renmin University of China
文摘Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.
基金Sponsored by the Departmet of Science ad Technology, Government of Heilongjiang Province(Grant No.GC04A407).
文摘The universal creep equation is successful in relating the creep (ε) to the aging time (t) , coefficient of retardation time (β) , and intrinsic time ( to ). This relation was used to treat the creep experimental data for polyvinyl chloride ( PVC ) specimens at a given stress and different aging times. The βgs found by the “polynomial fitting” method in this work instead of the “middle - point” method reported in the literature. The unified master line was constructed with the treated data and curves according to the universal equation. The master line can be used to predict the long- term creed behavior and lifetime by extrapolating.