[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in...[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in the eastern margin of Gonghe Basin,Qinghai Province as the research objects,fine roots were collected by root core drilling method,and the differences of fine root biomass,root length density,average diameter and root tip number at the soil depths of 0-20,20-40,40-60,60-80 and 80-100 cm were analyzed.[Results]The total biomass density of P.cathayana plantation was mainly distributed in the soil layer of 0-60 cm,accounting for 76%of the entire soil layer,and its value increased with the increase in forest age.With the increase in different forest ages,the root length density,average diameter and root tip number of living fine roots in the soil layer of 0-60 cm accounted for 74%-81%of the entire soil layer,and the proportions in the soil layers of 60-80 and 80-100 cm were 9%-11%.The biomass density,root length density,average diameter and root tip number of living and dead fine roots of P.cathayana plantation increased with the increase of forest age.The root length density,average diameter and root tip number of P.cathayana fine roots showed a linear function change trend with the growth of forest age,which could be described by the linear function equation y=ax+b(a>0).The analysis results showed that the root length density,average diameter and root tip number of P.cathayana were significantly correlated with the total biomass density of fine roots,and the root length density and average diameter had an extremely positive correlation with the total biomass density.[Conclusions]In the future,P.cathayana plantation should be properly tended to promote the development of fine roots and maximize its ecological benefits.展开更多
The genus Populus contains some of the most economically important tree species and hybrids in the world. We compared productivity of short and long-rotation poplar plantations using published data from 23 countries t...The genus Populus contains some of the most economically important tree species and hybrids in the world. We compared productivity of short and long-rotation poplar plantations using published data from 23 countries to determine if climate, particularly temperature, had any effect on the observed patterns of productivity. We discovered that climate factors (related to temperature) and clone origin (pure species or hybrids) slightly influenced productivity of long rotation forests more than short rotation plantations. While long rotation plantation productivity exhibited positive correlations with increasing temperature during winter and decreasing heat during summer, short rotation plantations showed weak positive relationship among productivity and increasing yearly temperature and the number of hot days. It was apparent that short rotation plantations productivity was less dependent on regional climatic variables or origin of clone. However, it appears that overall, regardless of the system, Populus species are generally adapted to a range of climatic conditions where they are planted.展开更多
The paper deals with the stand structure and yield of black locust (Robinia pseudoacacia L.) forests mixed with white (Populus alba L.) in various proportions, partly applying a new methodological approach. The main s...The paper deals with the stand structure and yield of black locust (Robinia pseudoacacia L.) forests mixed with white (Populus alba L.) in various proportions, partly applying a new methodological approach. The main stand structure and yield factors were determined separately for each species, measured stem by stem, using the volume functions prepared for each species. The ratio of the volumes of the species (A and B) in mixed and in pure stands (based on volume tables) was determined. A close relationship has been found between the ratio by relative total volume and the proportion (by the number of stems) of the species. The relative surplus in the volume of the mixed stands varied between 1.24-1.55 at the age of 16 compared to the control, i.e. the yield of pure stands of the species concerned. The trial has also proven that if two species have a fast initial growth rate and a similar rotation age, they can be planted in mixed stands resulting in mutual advantages.展开更多
Estimation of the transpiration rate for a tree is generally based on sap flow measurements within the hydro-active stem xylem. In this study, radial variation of sap flow velocity(Js) was investigated at five depth...Estimation of the transpiration rate for a tree is generally based on sap flow measurements within the hydro-active stem xylem. In this study, radial variation of sap flow velocity(Js) was investigated at five depths of the xylem(1, 2, 3, 5 and 8 cm under the cambium) in three mature Xinjiang poplar(Populus alba L. var. pyramidalis) trees grown at the Gansu Minqin National Studies Station for Desert Steppe Ecosystem from May to October 2011. Thermal dissipation probes of various lengths manufactured according to the Granier's design were installed into each tree for simultaneous observation of the radial patterns of Js through the xylem. The radial patterns were found to fit the four-parameter GaussAmp equation. The peak Js was about 27.02±0.95 kg/(dm2?d) at approximately 3 to 5 cm deep from the cambium of the three trees,and the lowest Js appeared at 1 cm deep in most of the time. Approximately 50% of the total sap flow in Xinjiang poplar occurred within one-third of the xylem from its outer radius, whereas 90% of the total sap flow occurred within two-fifth of the xylem. In addition, the innermost point of the xylem(at 8-cm depth), which appeared as the penultimate sap flow in most cases during the study period, was hydro-active with Js,8 of 7.55±3.83 kg/(dm2?d). The radial pattern of Js was found to be steeper in midday than in other time of the day, and steeper diurnal fluctuations were recorded in June, July and August(the mid-growing season). Maximum differences between the lowest Js(Js,1 or Js,8) and the highest Js(Js,3 or Js,5) from May through October were 12.41, 17.35, 16.30, 18.52, 12.60 and 16.04 g/(cm2?h), respectively. The time-dependent changes of Js along the radial profile(except at 1-cm depth) were strongly related to the reference evapotranspiration(ET0). Due to significant radial variability of Js, the mean daily sap flow at the whole-tree level could be over-estimated by up to 29.69% when only a single probe at depth of 2 cm was used. However, the accuracy of the estimation of sap flow in Xinjiang poplar could be significantly improved using a correction coefficient of 0.885.展开更多
The ascomata and mycorrhizae of Tuber indicum s.l. were collected under the forest of broad-leaf species Populus yunnanensis and Quercus pannosa in the field respectively. The symbiotic relationships of both trees wit...The ascomata and mycorrhizae of Tuber indicum s.l. were collected under the forest of broad-leaf species Populus yunnanensis and Quercus pannosa in the field respectively. The symbiotic relationships of both trees with T. indicum were examined and affirmed based on morphology and ITS-rDNA sequences. These two mycorrhizal combinations were successfully produced on artificially controlled substrates and cultural condition. This is the first report of a mycorrhizal association and synthesis between Chinese black truffles and poplars. A hyphal net covering the mantle’s surface of the mycorrhizae was detected in both mycorrhizal combinations. The mycorrhizal colonization of P. yunnanensis and Q. pannosa suggests that T. indicum s.l. has a broader host range and that additional corresponding wood species would be used as candidates for the cultivation of T. indicum. The nuclear-ITS sequences of the mycorrhizae included in the phylogeny of the T. indicum complex revealed that the two clades within the complex do not markedly differ with respect to their preferences for host species or geographical origin. Our results help to explain the wide distribution of both clades of the T. indicum complex. It would be more important for truffle conservation and Chinese black truffle plantation development with these two dominated & alpestrine Populus yunnanensis and Quercus pannosa at subalpine limestone areas in China.展开更多
文摘[Objectives]The paper was to study the fine root distribution characteristics of Populus cathayana plantations at different ages in alpine sandy land.[Methods]With 5,10,15,20,and 25 years old P.cathayana plantation in the eastern margin of Gonghe Basin,Qinghai Province as the research objects,fine roots were collected by root core drilling method,and the differences of fine root biomass,root length density,average diameter and root tip number at the soil depths of 0-20,20-40,40-60,60-80 and 80-100 cm were analyzed.[Results]The total biomass density of P.cathayana plantation was mainly distributed in the soil layer of 0-60 cm,accounting for 76%of the entire soil layer,and its value increased with the increase in forest age.With the increase in different forest ages,the root length density,average diameter and root tip number of living fine roots in the soil layer of 0-60 cm accounted for 74%-81%of the entire soil layer,and the proportions in the soil layers of 60-80 and 80-100 cm were 9%-11%.The biomass density,root length density,average diameter and root tip number of living and dead fine roots of P.cathayana plantation increased with the increase of forest age.The root length density,average diameter and root tip number of P.cathayana fine roots showed a linear function change trend with the growth of forest age,which could be described by the linear function equation y=ax+b(a>0).The analysis results showed that the root length density,average diameter and root tip number of P.cathayana were significantly correlated with the total biomass density of fine roots,and the root length density and average diameter had an extremely positive correlation with the total biomass density.[Conclusions]In the future,P.cathayana plantation should be properly tended to promote the development of fine roots and maximize its ecological benefits.
文摘The genus Populus contains some of the most economically important tree species and hybrids in the world. We compared productivity of short and long-rotation poplar plantations using published data from 23 countries to determine if climate, particularly temperature, had any effect on the observed patterns of productivity. We discovered that climate factors (related to temperature) and clone origin (pure species or hybrids) slightly influenced productivity of long rotation forests more than short rotation plantations. While long rotation plantation productivity exhibited positive correlations with increasing temperature during winter and decreasing heat during summer, short rotation plantations showed weak positive relationship among productivity and increasing yearly temperature and the number of hot days. It was apparent that short rotation plantations productivity was less dependent on regional climatic variables or origin of clone. However, it appears that overall, regardless of the system, Populus species are generally adapted to a range of climatic conditions where they are planted.
基金Part of the work was financed by OTKA support(Ref.No.T 029021)
文摘The paper deals with the stand structure and yield of black locust (Robinia pseudoacacia L.) forests mixed with white (Populus alba L.) in various proportions, partly applying a new methodological approach. The main stand structure and yield factors were determined separately for each species, measured stem by stem, using the volume functions prepared for each species. The ratio of the volumes of the species (A and B) in mixed and in pure stands (based on volume tables) was determined. A close relationship has been found between the ratio by relative total volume and the proportion (by the number of stems) of the species. The relative surplus in the volume of the mixed stands varied between 1.24-1.55 at the age of 16 compared to the control, i.e. the yield of pure stands of the species concerned. The trial has also proven that if two species have a fast initial growth rate and a similar rotation age, they can be planted in mixed stands resulting in mutual advantages.
基金supported by the National Natural Science Foundation of China (31070628)Field support for this research was provided by Gansu Minqin National Studies Station for Desert Steppe Ecosystem
文摘Estimation of the transpiration rate for a tree is generally based on sap flow measurements within the hydro-active stem xylem. In this study, radial variation of sap flow velocity(Js) was investigated at five depths of the xylem(1, 2, 3, 5 and 8 cm under the cambium) in three mature Xinjiang poplar(Populus alba L. var. pyramidalis) trees grown at the Gansu Minqin National Studies Station for Desert Steppe Ecosystem from May to October 2011. Thermal dissipation probes of various lengths manufactured according to the Granier's design were installed into each tree for simultaneous observation of the radial patterns of Js through the xylem. The radial patterns were found to fit the four-parameter GaussAmp equation. The peak Js was about 27.02±0.95 kg/(dm2?d) at approximately 3 to 5 cm deep from the cambium of the three trees,and the lowest Js appeared at 1 cm deep in most of the time. Approximately 50% of the total sap flow in Xinjiang poplar occurred within one-third of the xylem from its outer radius, whereas 90% of the total sap flow occurred within two-fifth of the xylem. In addition, the innermost point of the xylem(at 8-cm depth), which appeared as the penultimate sap flow in most cases during the study period, was hydro-active with Js,8 of 7.55±3.83 kg/(dm2?d). The radial pattern of Js was found to be steeper in midday than in other time of the day, and steeper diurnal fluctuations were recorded in June, July and August(the mid-growing season). Maximum differences between the lowest Js(Js,1 or Js,8) and the highest Js(Js,3 or Js,5) from May through October were 12.41, 17.35, 16.30, 18.52, 12.60 and 16.04 g/(cm2?h), respectively. The time-dependent changes of Js along the radial profile(except at 1-cm depth) were strongly related to the reference evapotranspiration(ET0). Due to significant radial variability of Js, the mean daily sap flow at the whole-tree level could be over-estimated by up to 29.69% when only a single probe at depth of 2 cm was used. However, the accuracy of the estimation of sap flow in Xinjiang poplar could be significantly improved using a correction coefficient of 0.885.
文摘The ascomata and mycorrhizae of Tuber indicum s.l. were collected under the forest of broad-leaf species Populus yunnanensis and Quercus pannosa in the field respectively. The symbiotic relationships of both trees with T. indicum were examined and affirmed based on morphology and ITS-rDNA sequences. These two mycorrhizal combinations were successfully produced on artificially controlled substrates and cultural condition. This is the first report of a mycorrhizal association and synthesis between Chinese black truffles and poplars. A hyphal net covering the mantle’s surface of the mycorrhizae was detected in both mycorrhizal combinations. The mycorrhizal colonization of P. yunnanensis and Q. pannosa suggests that T. indicum s.l. has a broader host range and that additional corresponding wood species would be used as candidates for the cultivation of T. indicum. The nuclear-ITS sequences of the mycorrhizae included in the phylogeny of the T. indicum complex revealed that the two clades within the complex do not markedly differ with respect to their preferences for host species or geographical origin. Our results help to explain the wide distribution of both clades of the T. indicum complex. It would be more important for truffle conservation and Chinese black truffle plantation development with these two dominated & alpestrine Populus yunnanensis and Quercus pannosa at subalpine limestone areas in China.