Laboratory feeding experiments with the poplar aphid, Chaitophorus populeti (Panzer), feeding on transgenic poplar (P. alba × P. glandulosa) varieties C13-5 and C013-5, were carried out to study the effect of...Laboratory feeding experiments with the poplar aphid, Chaitophorus populeti (Panzer), feeding on transgenic poplar (P. alba × P. glandulosa) varieties C13-5 and C013-5, were carried out to study the effect of transgenic poplar on the ladybird Harmonia axyridis (Pallas). The mortality and development time of the immature stages, the eclosion rate and body mass of H. axyridis were measured. The results indicated that C. populeti feeding on different varieties of transgenic plants had no statistically significant ef- fect on the mortality ofH. axyridis larvae. The development time of larval and pupal stages were not significantly different between the two transgenic poplars and a non-transgenic poplar. Furthermore, the body mass and eclosion rate did not show any difference between the H. axyridis feeding on aphids reared on transgenic plants and those from non-transgenic plants. It is suggested that transgenic plants have no deleterious effect on the predatory ladybird.展开更多
Populus alba × P.glandulosa clone 84 K,derived from South Korea,is widely cultivated in China and used as a model in the molecular research of woody plants because of hi gh gene transformation efficiency.Here,we ...Populus alba × P.glandulosa clone 84 K,derived from South Korea,is widely cultivated in China and used as a model in the molecular research of woody plants because of hi gh gene transformation efficiency.Here,we combined63-fold coverage Illumina short reads and 126-fold coverage PacBio long reads to assemble the genome.Due to the hi gh heterozygosity level at 2.1% estimated by k-mer analysis,we exploited TrioCanu for genome assembly.The PacBio clean subreads of P.alba × P.glandulosa were separated into two parts according to the similarities,compared with the parental genomes of P.alba and P.glandulosa.The two parts of the subreads were assembled to two sets of subgenomes comprising subgenome A(405.31 Mb,from P.alba)and subgenome G(376.05 Mb,from P.glandulosa) with the contig N50 size of 5.43 Mb and 2.15 Mb,respectively.A high-quality P.alba × P.glandulosa genome assembly was obtained.The genome size was 781.36 Mb with the contig N50 size of 3.66 Mb and the longest contig was 19.47 Mb.In addition,a total of 176.95 Mb(43.7%),152.37 Mb(40.5%)of repetitive elements were identified and a total of 38,701 and 38,449 protein-coding genes were predicted in subgenomes A and G,respectively.For functional annotation,96.98% of subgenome A and 96.96% of subgenome G genes were annotated with public databases.This de novo assembled genome will facilitate systematic and comprehensive study,such as multi-omics analysis,in the model tree P.alba X P.glandulosa.展开更多
Because overexpression of Vitreoscilla hemoglobin gene(Vgb)gene in plants can enhance tolerance to waterlogging,here Vgb was inserted into Populus alba×glandulosa to investigate its expression and effects on grow...Because overexpression of Vitreoscilla hemoglobin gene(Vgb)gene in plants can enhance tolerance to waterlogging,here Vgb was inserted into Populus alba×glandulosa to investigate its expression and effects on growth and physiological responses to waterlogging stress in the transgenic poplars.Southern blotting and RT-PCR analysis of Vgb-transgenic P.alba×glandulosa showed that the Vgb gene was integrated into the genome of the V13-81 and V13-85 transgenic lines and expressed.In greenhouse waterlogging stress tests,mortality of the transgenic poplar was significant lower than that of nontransgenic plants with increasing treatment time from 2 to 22 days.The transgenic plants had higher chlorophyll content and less chloroplast damage than in the control plants.Additionally,starch accumulation increased,and growth was enhanced in the transgenic plants,suggesting that the Vgb-expressing lines had improved energy reserves.Field trials of the transgenic poplar suggested that Vgb expression promotes growth and influences wood quality.Taken together,our results suggest that the expression of Vgb can increase the accumulation of chlorophyll and starch in the transgenic poplar,improve its ability to endure flooding,and improve growth and wood quality of the transgenic plants.展开更多
Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensitie...Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensities of pruning(none,moderate and severe)were tested on poplars(Populus alba×P.talassica)in the arid desert region of northwest China to compare the concentrations of soluble sugar(SS),starch(ST)and total nonstructural carbohydrate(TNC)in leaves,branches and trunks during the growing season.The concentration of NSC components after different pruning intensities varied similarly in seasonal patterns,increasing slowly at the beginning of the growing season,continuously declining in the middle,then gradually recovering by the end of the growing season.The monthly mean NSC concentration in poplar differed significantly among the three pruning intensities(p<0.05).The SS concentration in pruned trees was higher than in unpruned trees(p<0.05).For moderately pruned trees,the concentrations of ST and TNC in trunks and branches were higher than in unpruned and in severely pruned trees(p<0.05).Compared with no pruning,pruning changed the seasonal variation in NSC concentration.The orders of SS and TNC concentrations in aboveground organs were leaf>branch>trunk,while the order of ST concentration was trunk>leaf>branch,which was related to functional differences of plant organs.The annual average growth in height of unpruned,moderately pruned,and severely pruned poplars was 0.21±0.06,0.45±0.09 and 0.24±0.05 m,respectively,and the annual average growth in DBH were 0.92±0.04,1.27±0.06 and 1.02±0.05 cm,respectively.Our results demonstrate that moderate pruning may effectively increase the annual growth in tree height and DBH while avoiding damage caused by excessive pruning to the tree body.Therefore,moderate pruning may increase the NSC storage and improve the growth of timber species.展开更多
High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method fo...High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The sc RNA-seq profiled9,798 cells, which were grouped into 12 clusters.Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations,we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type(cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.展开更多
In this study,genetic stability of foreign genes was checked by using PCR technology. A total of 4 lines of soil samples from transgenic and non-transgenic control Populus alba×P.glandulosa and the soil samples f...In this study,genetic stability of foreign genes was checked by using PCR technology. A total of 4 lines of soil samples from transgenic and non-transgenic control Populus alba×P.glandulosa and the soil samples from the stands were collected in two successive years,and the bacteria,fungi and antinomyces were isolated by using flat dilution method to determine their quantities. The results demonstrated that target genes were stable present in the genome of transgenic poplar. We found that three kinds of soil microorganism appeared different trends within different months and different years. The ANOVA and multiple comparison analyses revealed that there was no significant difference in quantity of the soil microorganisms among most poplar lines at the same time point. Meanwhile,significant differences of the soil microorganism community were found among several transgenic lines,and between a few transgenic and non-transgenic lines,but they did not show any relation to the type and number of foreign genes. Our preliminary results indicated that the 2-year-old transgenic poplar growing in field had no significant effects on soil microorganisms.展开更多
基金supported by the National Premier Special Funds for Study and Industrialization of Transgenic Plants (J2002-B-004)the National Natural Science and Technology Support Plan of China "the technology researchdemonstration of forestry-paper integrate project" (Grant No. 2006BAD32B)
文摘Laboratory feeding experiments with the poplar aphid, Chaitophorus populeti (Panzer), feeding on transgenic poplar (P. alba × P. glandulosa) varieties C13-5 and C013-5, were carried out to study the effect of transgenic poplar on the ladybird Harmonia axyridis (Pallas). The mortality and development time of the immature stages, the eclosion rate and body mass of H. axyridis were measured. The results indicated that C. populeti feeding on different varieties of transgenic plants had no statistically significant ef- fect on the mortality ofH. axyridis larvae. The development time of larval and pupal stages were not significantly different between the two transgenic poplars and a non-transgenic poplar. Furthermore, the body mass and eclosion rate did not show any difference between the H. axyridis feeding on aphids reared on transgenic plants and those from non-transgenic plants. It is suggested that transgenic plants have no deleterious effect on the predatory ladybird.
基金supported by grants CAFYBB2017ZY001 and TGB2016001 from Fundamental Research Funds of the Chinese Academy of Forestry。
文摘Populus alba × P.glandulosa clone 84 K,derived from South Korea,is widely cultivated in China and used as a model in the molecular research of woody plants because of hi gh gene transformation efficiency.Here,we combined63-fold coverage Illumina short reads and 126-fold coverage PacBio long reads to assemble the genome.Due to the hi gh heterozygosity level at 2.1% estimated by k-mer analysis,we exploited TrioCanu for genome assembly.The PacBio clean subreads of P.alba × P.glandulosa were separated into two parts according to the similarities,compared with the parental genomes of P.alba and P.glandulosa.The two parts of the subreads were assembled to two sets of subgenomes comprising subgenome A(405.31 Mb,from P.alba)and subgenome G(376.05 Mb,from P.glandulosa) with the contig N50 size of 5.43 Mb and 2.15 Mb,respectively.A high-quality P.alba × P.glandulosa genome assembly was obtained.The genome size was 781.36 Mb with the contig N50 size of 3.66 Mb and the longest contig was 19.47 Mb.In addition,a total of 176.95 Mb(43.7%),152.37 Mb(40.5%)of repetitive elements were identified and a total of 38,701 and 38,449 protein-coding genes were predicted in subgenomes A and G,respectively.For functional annotation,96.98% of subgenome A and 96.96% of subgenome G genes were annotated with public databases.This de novo assembled genome will facilitate systematic and comprehensive study,such as multi-omics analysis,in the model tree P.alba X P.glandulosa.
基金supported by the Basic Research Fund of RIF(Grant No.CAFYBB2017ZA001-3)the National Natural Science Foundation of China(Grant No.31700589)the Forestry Genetic Breeding National Key Laboratory(Chinese Academy of Forestry Sciences)Open Project(Grant No.TGB 2013005).
文摘Because overexpression of Vitreoscilla hemoglobin gene(Vgb)gene in plants can enhance tolerance to waterlogging,here Vgb was inserted into Populus alba×glandulosa to investigate its expression and effects on growth and physiological responses to waterlogging stress in the transgenic poplars.Southern blotting and RT-PCR analysis of Vgb-transgenic P.alba×glandulosa showed that the Vgb gene was integrated into the genome of the V13-81 and V13-85 transgenic lines and expressed.In greenhouse waterlogging stress tests,mortality of the transgenic poplar was significant lower than that of nontransgenic plants with increasing treatment time from 2 to 22 days.The transgenic plants had higher chlorophyll content and less chloroplast damage than in the control plants.Additionally,starch accumulation increased,and growth was enhanced in the transgenic plants,suggesting that the Vgb-expressing lines had improved energy reserves.Field trials of the transgenic poplar suggested that Vgb expression promotes growth and influences wood quality.Taken together,our results suggest that the expression of Vgb can increase the accumulation of chlorophyll and starch in the transgenic poplar,improve its ability to endure flooding,and improve growth and wood quality of the transgenic plants.
基金supported by Key Projects of Universities for Foreign Cultural and Educational Experts Employment Plan in 2018(T2018013)granted from Special Funds for Sustainable Development of Science and Technology Platform for Fundamental Research Business Expenses of Central Universities(2572018CP05).
文摘Although pruning is important to obtain highquality,large-diameter timber,the effects of pruning on nonstructural carbohydrates(NSC)in aboveground organs of many timber species are not well understood.Three intensities of pruning(none,moderate and severe)were tested on poplars(Populus alba×P.talassica)in the arid desert region of northwest China to compare the concentrations of soluble sugar(SS),starch(ST)and total nonstructural carbohydrate(TNC)in leaves,branches and trunks during the growing season.The concentration of NSC components after different pruning intensities varied similarly in seasonal patterns,increasing slowly at the beginning of the growing season,continuously declining in the middle,then gradually recovering by the end of the growing season.The monthly mean NSC concentration in poplar differed significantly among the three pruning intensities(p<0.05).The SS concentration in pruned trees was higher than in unpruned trees(p<0.05).For moderately pruned trees,the concentrations of ST and TNC in trunks and branches were higher than in unpruned and in severely pruned trees(p<0.05).Compared with no pruning,pruning changed the seasonal variation in NSC concentration.The orders of SS and TNC concentrations in aboveground organs were leaf>branch>trunk,while the order of ST concentration was trunk>leaf>branch,which was related to functional differences of plant organs.The annual average growth in height of unpruned,moderately pruned,and severely pruned poplars was 0.21±0.06,0.45±0.09 and 0.24±0.05 m,respectively,and the annual average growth in DBH were 0.92±0.04,1.27±0.06 and 1.02±0.05 cm,respectively.Our results demonstrate that moderate pruning may effectively increase the annual growth in tree height and DBH while avoiding damage caused by excessive pruning to the tree body.Therefore,moderate pruning may increase the NSC storage and improve the growth of timber species.
基金This work was supported by grants from Fundamental Research Funds of Chinese Academy of Forestry(CAFYBB2018ZY001-5 and CAFYBB2017ZY001)the National Natural Science Foundation of China(31670667)。
文摘High-throughputsingle-cellRNAsequencing(sc RNA-seq) has advantages over traditional RNA-seq to explore spatiotemporal information on gene dynamic expressions in heterogenous tissues. We performed Drop-seq, a method for the dropwise sequestration of single cells for sequencing, on protoplasts from the differentiating xylem of Populus alba × Populus glandulosa. The sc RNA-seq profiled9,798 cells, which were grouped into 12 clusters.Through characterization of differentially expressed genes in each cluster and RNA in situ hybridizations,we identified vessel cells, fiber cells, ray parenchyma cells and xylem precursor cells. Diffusion pseudotime analyses revealed the differentiating trajectory of vessels, fiber cells and ray parenchyma cells and indicated a different differentiation process between vessels and fiber cells, and a similar differentiation process between fiber cells and ray parenchyma cells. We identified marker genes for each cell type(cluster) and key candidate regulators during developmental stages of xylem cell differentiation. Our study generates a high-resolution expression atlas of wood formation at the single cell level and provides valuable information on wood formation.
文摘In this study,genetic stability of foreign genes was checked by using PCR technology. A total of 4 lines of soil samples from transgenic and non-transgenic control Populus alba×P.glandulosa and the soil samples from the stands were collected in two successive years,and the bacteria,fungi and antinomyces were isolated by using flat dilution method to determine their quantities. The results demonstrated that target genes were stable present in the genome of transgenic poplar. We found that three kinds of soil microorganism appeared different trends within different months and different years. The ANOVA and multiple comparison analyses revealed that there was no significant difference in quantity of the soil microorganisms among most poplar lines at the same time point. Meanwhile,significant differences of the soil microorganism community were found among several transgenic lines,and between a few transgenic and non-transgenic lines,but they did not show any relation to the type and number of foreign genes. Our preliminary results indicated that the 2-year-old transgenic poplar growing in field had no significant effects on soil microorganisms.