期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PuHox52 promotes coordinated uptake of nitrate,phosphate, and iron under nitrogen deficiency in Populus ussuriensis
1
作者 Ming Wei Mengqiu Zhang +9 位作者 Jiali Sun Ying Zhao Solme Pak Miaomiao Ma Yingxi Chen Han Lu Jingli Yang Hairong Wei Yuhua Li Chenghao Li 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第3期791-809,共19页
It is of great importance to better understand how trees regulate nitrogen(N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not bee... It is of great importance to better understand how trees regulate nitrogen(N) uptake under N deficiency conditions which severely challenge afforestation practices, yet the underlying molecular mechanisms have not been well elucidated. Here,we functionally characterized PuHox52, a Populus ussuriensis HD-ZIP transcription factor, whose overexpression greatly enhanced nutrient uptake and plant growth under N deficiency. We first conducted an RNA sequencing experiment to obtain root transcriptome using PuHox52-overexpression lines of P. ussuriensis under low N treatment. We then performed multiple genetic and phenotypic analyses to identify key target genes of PuHox52 and validated how they acted against N deficiency under PuHox52 regulation.PuHox52 was specifically induced in roots by N deficiency, and overexpression of PuHox52promoted N uptake, plant growth, and root development. We demonstrated that several nitrate-responsive genes(PuNRT1.1, PuNRT2.4,PuCLC-b, PuNIA2, PuNIR1, and PuNLP1),phosphate-responsive genes(PuPHL1A and PuPHL1B), and an iron transporter gene(PuIRT1) were substantiated to be direct targets of PuHox52. Among them, PuNRT1.1, PuPHL1A/B, and PuIRT1 were upregulated to relatively higher levels during PuHox52-mediated responses against N deficiency in PuHox52-overexpression lines compared to WT. Our study revealed a novel regulatory mechanism underlying root adaption to N deficiency where PuHox52 modulated a coordinated uptake of nitrate, phosphate, and iron through 'PuHox52-PuNRT1.1', 'PuHox52-PuPHL1A/PuPHL1B', and'PuHox52-PuIRT1' regulatory relationships in poplar roots. 展开更多
关键词 HD-Zip transcription factor iron transport nitrate transport nitrogen deprivation phosphate absorption populus ussuriensis root architecture target gene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部