Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr...Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.展开更多
In order to research environment parameters and physiological indices of high-quality and high-yield apple trees, two orchards with young and mature apples trees were investigated to explore structural parameter of ap...In order to research environment parameters and physiological indices of high-quality and high-yield apple trees, two orchards with young and mature apples trees were investigated to explore structural parameter of apple tree and community, and some physiological indices in fields and by room measurements. The results showed that tree height of high-quality orchard was in the range of 260 to 290 cm, branch angle in 70°-75°, and orchard coverage rate in 75%-94%, and the connec-tion rates between rows and trees were lower. Furthermore, the total branches of mature orchard reached 1.04 ×106 per hm2, while the young orchard was 8.79 ×105 per hm2; the leaves were thick and chlorophyl content was high, with SPAD value at 58.22. Additional y, the photosynthesis of the orchard was strong, and net photo-synthetic rate was 17.48-21.8 μmolCO2/(m2·s). The proportions of lateral shoot of bearing part were 81% and 75% respectively.展开更多
By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The res...By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The results showed that the probability of a supercell forming would be higher when SI (showalter index) ≤ -2℃,K (K index) ≥ 30℃ and 0-6 km wind shear>15 m/s.The supercell storms can generally be divided into two categories,namely,type of isolation and mosaic type.To the type of isolation,the max reflectivity,cell-based VIL,max reflectivity height,cell top,mesocyclone base and top were significantly higher than the mosaic type.Isolation-type supercells had significantly higher probability of hail,lower probability of gale than the mosaic category.The mesocyclone attribute differences between isolation-type and mosaic type supercells determined the differences of storm structures and severe weather phenomenon.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the pro...The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.展开更多
Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structu...Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.展开更多
By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complet...By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of...This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.展开更多
The fundamental principle and method of the determining of structure parameters for the hydraulic elastic bulging roller were discussed. The relationship among crown of roller, hydraulic pressure and thickness of roll...The fundamental principle and method of the determining of structure parameters for the hydraulic elastic bulging roller were discussed. The relationship among crown of roller, hydraulic pressure and thickness of roller sleeve was studied. Aluminum was chosen as experimental material to accomplish the dynamic load experiment. The hydraulic elastic bulging roller exerts good effect on shape control and therefore has a broad application prospect in engineering. [展开更多
Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self...Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.展开更多
In order to study reasonable tree structure parameters of Y-shaped pear orchards in natural conditions and at management technical level of Tai'an area, the tree structure and population structure of high-quality ...In order to study reasonable tree structure parameters of Y-shaped pear orchards in natural conditions and at management technical level of Tai'an area, the tree structure and population structure of high-quality and high-yielding Y-shaped pear orchards were investigated. The results showed that when the yield of Y-shaped 'Oshu' was 2 550 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was about 54 000, and the number of short branches was the largest, accounting for 80.1% of total number of branches, followed by middle branches, long branches and developmental branches. As the yield of Y-shaped 'Qiuyue' was 2 875 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was 51 000, and the number of short branches was the largest, accounting for 75.6% of total number of branches, followed by middle branches, long branches and developmental branches. When the yield of Y-shaped 'Niitaka' was 3 000 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was 43 000, and the number of short branches was the largest, accounting for 82.0% of total number of branches, followed by long branches, middle branches and developmental branches.展开更多
Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how...Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.展开更多
Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were...Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.展开更多
Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white nois...Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white noise and non-white noise signals. The cross-correlation function of response signal is decomposed into mode functions and residue by EMD method. The identification technique of the modal parameters of single freedom degree is applied to each mode function to obtain natural frequencies, damping ratios and mode shapes. The results of identification of the five-degree freedom linear system demonstrate that the proposed method is effective in identifying the parameters of linear structures under non-stationary ambient excitation.展开更多
The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve...The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation.展开更多
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,...The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.展开更多
In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the...In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.展开更多
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金financial supports from the National Natural Science Foundation of China(52130104,51821001)High Technology and Key Development Project of Ningbo,China(2019B10102)。
文摘Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon.
基金Supported by Special Fund for Modern Agricultural Industry Technology System(CARS-28)~~
文摘In order to research environment parameters and physiological indices of high-quality and high-yield apple trees, two orchards with young and mature apples trees were investigated to explore structural parameter of apple tree and community, and some physiological indices in fields and by room measurements. The results showed that tree height of high-quality orchard was in the range of 260 to 290 cm, branch angle in 70°-75°, and orchard coverage rate in 75%-94%, and the connec-tion rates between rows and trees were lower. Furthermore, the total branches of mature orchard reached 1.04 ×106 per hm2, while the young orchard was 8.79 ×105 per hm2; the leaves were thick and chlorophyl content was high, with SPAD value at 58.22. Additional y, the photosynthesis of the orchard was strong, and net photo-synthetic rate was 17.48-21.8 μmolCO2/(m2·s). The proportions of lateral shoot of bearing part were 81% and 75% respectively.
基金Supported by The Project from Department of Science and Technology of Shandong Province Under Grant No. 2007GG20008001 and 2010GSF10805
文摘By using the high spatial and temporal resolution Jinan Doppler Weather Radar data and Jinan,Xingtai sounding data,the radar signature and mesocyclone parameters of 54 supercells during 2003-2008 were analyzed.The results showed that the probability of a supercell forming would be higher when SI (showalter index) ≤ -2℃,K (K index) ≥ 30℃ and 0-6 km wind shear>15 m/s.The supercell storms can generally be divided into two categories,namely,type of isolation and mosaic type.To the type of isolation,the max reflectivity,cell-based VIL,max reflectivity height,cell top,mesocyclone base and top were significantly higher than the mosaic type.Isolation-type supercells had significantly higher probability of hail,lower probability of gale than the mosaic category.The mesocyclone attribute differences between isolation-type and mosaic type supercells determined the differences of storm structures and severe weather phenomenon.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
文摘The developed auxiliary software serves to simplify, standardize and facilitate the software loading of the structural organization of a complex technological system, as well as its further manipulation within the process of solving the considered technological system. Its help can be especially useful in the case of a complex structural organization of a technological system with a large number of different functional elements grouped into several technological subsystems. This paper presents the results of its application for a special complex technological system related to the reference steam block for the combined production of heat and electricity.
基金National Natural Science Foundation of China under Grant No.51338001Natural Science Foundation of China under Grant Nos.51178028 and 51422801+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.2014YJS087Program for New Century Excellent Talents in University under Grant No.NCET-11-0571111 Project of China under Grant No.B13002
文摘Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.
文摘By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
基金National Natural Science Foundation of China Under Grant No. 50608012 and No.10472023The Cardiff Advanced Chinese Engineering Centre
文摘This paper presents a robust H∞ output feedback control approach for structural systems with uncertainties in model parameters by using available acceleration measurements and proposes conditions for the existence of such a robust output feedback controller. The uncertainties of structural stiffness, damping and mass parameters are assumed to be norm-bounded. The proposed control approach is formulated within the framework of linear matrix inequalities, for which existing convex optimization techniques, such as the LM1 toolbox in MATLAB, can be used effectively and conveniently. To illustrate the effectiveness of the proposed robust H∞ strategy, a six-story building was subjected both to the 1940 E1 Centro earthquake record and to a suddenly applied Kanai-Tajimi filtered white noise random excitation. The results show that the proposed robust H∞ controller provides satisfactory results with or without variation of the structural stiffness, damping and mass parameters.
文摘The fundamental principle and method of the determining of structure parameters for the hydraulic elastic bulging roller were discussed. The relationship among crown of roller, hydraulic pressure and thickness of roller sleeve was studied. Aluminum was chosen as experimental material to accomplish the dynamic load experiment. The hydraulic elastic bulging roller exerts good effect on shape control and therefore has a broad application prospect in engineering. [
文摘Based on the numerical simulation analysis, structure parameters of the high pressure fuel pump and common rail as well as flow limiter are designed and the GD-1 high pressure common rail fuel injection system is self-developed. Fuel injection characteristics experiment is performed on the GD-1 system. And double-factor variance analysis is applied to investigate the influence of the rail pressure and injection pulse width on the consistency of fuel injection quantity, thus to test whether the design of structure parameters is sound accordingly. The results of experiment and test show that rail pressure and injection pulse width as well as their mutual-effect have no influence on the injection quantity consistency, which proves that the structure parameters design is successful and performance of GD-1 system is sound.
基金Supported by Special Project for Construction of National Pear Industry Technology System(CARS-28-36)National Natural Science Foundation of China(31601708)+3 种基金Agricultural Seed Improvement Project of Shandong Province,China(2016LZGC034)Foundation for Young Scholars of Shandong Academy of Agricultural Sciences(2015YQN40)National Science and Technology Plan of Rural Areas in the"12th Five-year Plan"Period of China(2014BAD16B03-4)Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2016B07)
文摘In order to study reasonable tree structure parameters of Y-shaped pear orchards in natural conditions and at management technical level of Tai'an area, the tree structure and population structure of high-quality and high-yielding Y-shaped pear orchards were investigated. The results showed that when the yield of Y-shaped 'Oshu' was 2 550 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was about 54 000, and the number of short branches was the largest, accounting for 80.1% of total number of branches, followed by middle branches, long branches and developmental branches. As the yield of Y-shaped 'Qiuyue' was 2 875 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was 51 000, and the number of short branches was the largest, accounting for 75.6% of total number of branches, followed by middle branches, long branches and developmental branches. When the yield of Y-shaped 'Niitaka' was 3 000 kg/667 m^2 in the early fully fruiting period, the quantity of the branches per 667 m^2 was 43 000, and the number of short branches was the largest, accounting for 82.0% of total number of branches, followed by long branches, middle branches and developmental branches.
基金Supported by National Natural Science Foundation of China(Grant No.51905448)Chongqing Technology Innovation and Application Program of China(Grant No.cstc2018jszx-cyzdX0183)Fundamental Research Funds for the Central Universities of China(Grant No.SWU119060).
文摘Vertical picking method is a predominate method used to harvest cotton crop.However,a vertical picking method may cause spindle bending of the cotton picker if spindles collide with stones on the cotton field.Thus,how to realize a precise height control of the cotton picker is a crucial issue to be solved.The objective of this study is to design a height control system to avoid the collision.To design it,the mathematical models are established first.Then a multi-objective optimization model represented by structure parameters and control parameters is proposed to take the pressure of chamber without piston,response time and displacement error of the height control system as the opti-mization objectives.An integrated optimization approach that combines optimization via simulation,particle swarm optimization and simulated annealing is proposed to solve the model.Simulation and experimental test results show that the proposed integrated optimization approach can not only reduce the pressure of chamber without piston,but also decrease the response time and displacement error of the height control system.
基金Project(51178203)supported by the National Natural Science Foundation of China
文摘Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.
基金National Natural Science Foundation(No.19972016)for partly supporting this work
文摘Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white noise and non-white noise signals. The cross-correlation function of response signal is decomposed into mode functions and residue by EMD method. The identification technique of the modal parameters of single freedom degree is applied to each mode function to obtain natural frequencies, damping ratios and mode shapes. The results of identification of the five-degree freedom linear system demonstrate that the proposed method is effective in identifying the parameters of linear structures under non-stationary ambient excitation.
基金Project(2001AA501433)supported by the National High-Tech Research and Development Program of China
文摘The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation.
基金supported by the National Key Research and Development Program of China,under grant No.2018YFC1504903the Chongqing Natural Science Foundation,under grant No.cstc2020jcyj-msxm X0743 and cstc 2020jcyj-bsh0142+3 种基金the Open Research Fund of the State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,under grant No.Z019018China postdoctoral science foundation Grant No.2019M662918 and 2020M673152Regional Joint Fund for Basic and Applied Basic Research Fund of Guangdong Province,No.2019A1515110836the National Natural Science Foundation of China,under grant No.41688103。
文摘The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal.
基金supported by the National Natural Science Foundation of China (Grants 11002013, 11372025)the Defense Industrial Technology Development Program (Grants A0820132001, JCKY2013601B)+1 种基金the Aeronautical Science Foundation of China (Grant 2012ZA51010)111 Project (Grant B07009) for support
文摘In this paper, based on the second-order Taylor series expansion and the difference of convex functions algo- rithm for quadratic problems with box constraints (the DCA for QB), a new method is proposed to solve the static response problem of structures with fairly large uncertainties in interval parameters. Although current methods are effective for solving the static response problem of structures with interval parameters with small uncertainties, these methods may fail to estimate the region of the static response of uncertain structures if the uncertainties in the parameters are fairly large. To resolve this problem, first, the general expression of the static response of structures in terms of structural parameters is derived based on the second-order Taylor series expansion. Then the problem of determining the bounds of the static response of uncertain structures is transformed into a series of quadratic problems with box constraints. These quadratic problems with box constraints can be solved using the DCA approach effectively. The numerical examples are given to illustrate the accuracy and the efficiency of the proposed method when comparing with other existing methods.