期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
TEMPERATURE AND pH RESPONSE,AND SWELLING BEHAVIOR OF POROUS ACRYLONITRILE-ACRYLIC ACID COPOLYMER HYDROGELS
1
作者 包永忠 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第2期195-203,共9页
Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by flee-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox ... Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by flee-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox initiator system and alcohols porogens. The morphology, temperature and pH sensitive swelling behavior, and swelling kinetics of the resulting hydrogels were investigated. It was found that alcohol type and concentration had great influences on the pore structure and porosity of hydrogels. The pore size of hydrogel increases with the moderate increase of the length of alcohol alkyl chain. However, a further increase of alkyl length would result in the formation of cauliflower-like structure and the decrease of pore size. The porosity of hydrogels increases with the increase of porogen concentration in the polymerization medium. The hydrogels with macroporous structure swell or shrink much faster in response to the change of pH in comparison with the conventional hydrogel without macroporous structure. Furthermore, the response rate is closely related to the porosity of the hydrogels, which could be easily controlled by modulating the concentration of the porogen in the medium. The circular swelling behavior of hydrogels indicated the formation of a relaxing three-dimensional network. 展开更多
关键词 ACRYLONITRILE Acrylic acid porous hydrogel Swelling behavior
下载PDF
A New Method of Hierarchical Porous HAP/Polyacrylic Acid Hydrogel Composite by in Situ Precipitation
2
作者 Xin-Yu SHEN1 Zhi-Hong ZHU1 Peng WAN1 Shan-Shan LIU1Hua TONG1 ,2Δ Ji-Ming HU11(Institute ofAnalytical and Biomedical Sciences , College ofChemistry and Molecular Sciences ,Wuhan University, Wuhan430072, China)2( Center ofNano-Sciences and Nano-Technology Reseach, Wuhan University, Wuhan430072, China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期57-58,共2页
关键词 HAP A New Method of Hierarchical porous HAP/Polyacrylic Acid Hydrogel Composite by in Situ Precipitation
下载PDF
High-performance Ti_(3)C_(2)T_(x)achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor
3
作者 Peng Liao ZiYu Geng +3 位作者 Xin Zhang Wenjie Yan Zenghui Qiu Haijun Xu 《Nano Research》 SCIE EI CSCD 2024年第6期5305-5316,共12页
The actual manufacture of supercapacitors(SCs)is restricted by the inadequate energy density,and the energy density of devices can be properly promoted by assembling zinc-ion capacitors(ZICs)which used capacitive cath... The actual manufacture of supercapacitors(SCs)is restricted by the inadequate energy density,and the energy density of devices can be properly promoted by assembling zinc-ion capacitors(ZICs)which used capacitive cathode and battery-type anode.Two-dimensional(2D)MXene has brought great focuses in the electrode research on the foundation of large redox-active surface,but the specific capacitance is still affected by the tight stacking of interlaminations.Ti_(3)C_(2)T_(x)@polyaniline(PANI)heterostructures are prepared by uniformly depositing the conductive polymer PANI nanorods as the intercalation agent into the external of Ti_(3)C_(2)T_(x)nanosheets to inhibit stacking.Subsequently,by using graphene oxide(GO)-assisted low-temperature hydrothermal self-assembly manufacture,2D heterostructures are assembled into the three-dimensional(3D)porous crosslinked Ti_(3)C_(2)T_(x)@PANI-reduced graphene oxide(RGO)hydrogels.Attributed to the synergistic work of PANI nanorods,Ti_(3)C_(2)T_(X)nanosheets,and 3D crosslinking frameworks of RGO to match capacitive and battery effects,3D porous hierarchical Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels have rich ion transport channels,a large number of active sites,and excellent reaction kinetics.ZIC is assembled by using Ti_(3)C_(2)T_(x)@PANI-RGO heterostructure hydrogels as cathodes and zinc foil as anodes.In this work,Ti_(3)C_(2)T_(x)@PANI-RGO//Zn ZIC exhibits a wide working window(2.0 V),marked specific capacitance(589.89 F·g^(−1)at 0.5 A·g−1),salient energy density(327.71 Wh·kg^(−1)at 513.61 W·kg^(−1)and 192.20 Wh·kg^(−1)at 13,005.87 W·kg^(−1)),and durable cycling stability(97.87%capacitance retention after 10,000 cycles at 10 A·g^(−1)).This study emphasizes the device design of ZICs and the broad prospect of Ti_(3)C_(2)T_(x)-based hydrogels as viable cathodes for ZICs. 展开更多
关键词 polyaniline(PANI) Ti_(3)C_(2)T_(x)@PANI heterostructure intercalation process three-dimensional(3D)porous hydrogel high energy density zinc-ion capacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部