期刊文献+
共找到420篇文章
< 1 2 21 >
每页显示 20 50 100
Sintering preparation of porous sound-absorbing materials from steel slag 被引量:7
1
作者 孙朋 郭占成 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2230-2240,共11页
Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperatu... Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost. 展开更多
关键词 steel slag porous sound-absorbing material noise reduction coefficient POROSITY compressive strength
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
2
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials
3
作者 Jesus Ferrando‑Soria Antonio Fernandez 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期134-153,共20页
Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a varie... Porous organic molecular materials(POMMs)are an emergent class of molecular-based materials characterized by the formation of extended porous frameworks,mainly held by non-covalent interactions.POMMs represent a variety of chemical families,such as hydrogen-bonded organic frameworks,porous organic salts,porous organic cages,C-H···πmicroporous crystals,supramolecular organic frameworks,π-organic frameworks,halogen-bonded organic framework,and intrinsically porous molecular materials.In some porous materials such as zeolites and metal organic frameworks,the integration of multiscale has been adopted to build materials with multifunctionality and optimized properties.Therefore,considering the significant role of hierarchy in porous materials and the growing importance of POMMs in the realm of synthetic porous materials,we consider it appropriate to dedicate for the first time a critical review covering both topics.Herein,we will provide a summary of literature examples showcasing hierarchical POMMs,with a focus on their main synthetic approaches,applications,and the advantages brought forth by introducing hierarchy. 展开更多
关键词 porous organic molecular materials HIERARCHY Hydrogen-bonded organic frameworks porous cages FULLERENE
下载PDF
Porous framework materials for energy&environment relevant applications:A systematic review
4
作者 Yutao Liu Liyu Chen +16 位作者 Lifeng Yang Tianhao Lan Hui Wang Chenghong Hu Xue Han Qixing Liu Jianfa Chen Zeming Feng Xili Cui Qianrong Fang Hailong Wang Libo Li Yingwei Li Huabin Xing Sihai Yang Dan Zhao Jinping Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期217-310,共94页
Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff... Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective. 展开更多
关键词 porous framework materials CATALYSIS SEPARATION Gas storage Carbon neutrality
下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
5
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
下载PDF
Effect of Zircon Addition on Properties of Corundum Porous Materials
6
作者 CHEN Haonan LIU Xin +3 位作者 ZHANG Shiming LI Ying WANG Di JIA Quanli 《China's Refractories》 CAS 2024年第1期7-13,共7页
This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were use... This paper aims to improve the corrosion resistance of dispersive purging plugs.White fused corundum particles and fine powder,α-Al_(2)O_(3) micropowder,Cr_(2)O_(3) micropowder,Guangxi clay and zircon powder were used as the main raw materials.The mass ratio of white fused corundum particles and fine powder was fixed at 85:15,and 0,1%,2%,or 3%(by mass)of zircon fine powder was added to replace the same amount of white fused corundum fine powder.The corundum porous material was prepared by the particle stacking pore-forming method at 1650℃for 3 h.The effect of the zircon addition on the properties and microstructure of porous materials was investigated.The results show that:after adding zircon,the permeability of the porous material increases,the cold and hot strengths increase obviously,and the expansion rate after firing decreases.When the addition of zircon is 2%,the comprehensive performance of the specimen is optimal with the smallest linear change rate and the highest permeability. 展开更多
关键词 porous materials zircon fines purging plug PERMEABILITY
下载PDF
Preparation of steel slag porous sound-absorbing material using coal powder as pore former 被引量:4
7
作者 Peng Sun Zhancheng Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期67-75,共9页
The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The infl... The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material. 展开更多
关键词 Steel slag porous sound-absorbing material Noise reduction coefficient Apparent porosity Compressive strength
原文传递
Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method
8
作者 Jintao Liu Juan Zhao Xiaowei Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期981-1003,共23页
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T... In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band. 展开更多
关键词 Boundary element method isogeometric analysis two-dimensional acoustic analysis sound-absorbing materials topology optimization adjoint variable method
下载PDF
A thermodynamics-based three-scale constitutive model for partially saturated granular materials
9
作者 Jianqiu Tian Enlong Liu Yuancheng Guo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1813-1831,共19页
A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a... A three-scale constitutive model for unsaturated granular materials based on thermodynamic theory is presented.The three-scale yield locus,derived from the explicit yield criterion for solid matrix,is developed from a series of discrete interparticle contact planes.The three-scale yield locus is sensitive to porosity changes;therefore,it is reinterpreted as a corresponding constitutive model without phenomenological parameters.Furthermore,a water retention curve is proposed based on special pore morphology and experimental observations.The features of the partially saturated granular materials are well captured by the model.Under wetting and isotropic compression,volumetric compaction occurs,and the degree of saturation increases.Moreover,the higher the matric suction,the greater the strength,and the smaller the volumetric compaction.Compared with the phenomenological Barcelona basic model,the proposed three-scale constitutive model has fewer parameters;virtually all parameters have clear physical meanings. 展开更多
关键词 Unsaturated granular material Unsaturated porous material GEOmaterialS Multi-scale constitutive model Water retention curve PLASTICITY
下载PDF
Development of Eggshell Waste Incorporated with a Porous Host as a Humidity Adsorption Material
10
作者 BOONSOOK Kanokwan NAEMCHANTHARA Patcharin +1 位作者 LIMSUWAN Pichet NAEMCHANTHARA Kittisakchai 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期974-983,共10页
The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell w... The duck eggshell waste was developed to the novel desiccant that is friendly to human and environment.The calcium oxide(Ca O)and calcium chloride(CaCl_(2))as the calcium-based desiccants were prepared from eggshell waste.The Ca O desiccant derived from the eggshell waste sintering at 1300℃,while the CaCl_(2)desiccant was extracted from eggshell waste with the hydrochloric(HCl)solution at difierent concentrations from 5 to 30 wt%.The yield percentage of CaCl_(2)desiccant increased with increasing the HCl concentration to 25 wt%.The humidity adsorption behavior were investigated in the range of 75%-5%relative humidity.The results show the CaCl_(2)desiccant has the highest hydration rate.The porous host from the kaolin was sintered at different temperatures from 200 to 1000℃and incorporated with 30%w/v concentrations of CaCl_(2).The physical properties and the humid-adsorption capacity of all porous host conditions were investigated.The porous host at sintering temperature 800℃has the highest specific surface area.Moreover,the porous host at sintering temperature 800℃with the 30%w/v concentration of CaCl_(2)desiccant has the highest humid-adsorption capacity. 展开更多
关键词 Eggshell waste Calcium chloride DESICCANT KAOLIN porous materials
下载PDF
A step‐growth strategy to grow vertical porous aromatic framework nanosheets on graphene oxide:Hybrid material‐confined Co for ammonia borane methanolysis
11
作者 Xiugang Li Qilu Yao +2 位作者 Rongwei Shi Minsong Huang Zhang‐Hui Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第10期64-76,共13页
The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth... The rational synthesis of a two-dimensional(2D)porous aromatic framework(PAF)with a controllable growth direction remains a challenge to overcome the limitation of traditional stacked 2D materials.Herein,a step-growth strategy is developed to fabricate a vertically oriented nitrogen-rich porous aromatic framework on graphene oxide(V-PAF-GO)using monolayer benzidine-functionalized GO(BZ-GO)as a molecular pillar.Then,the confined Co nanoparticle(NP)catalysts are synthesized by encapsulating ultra-small Co into the slit pores of V-PAF-GO.Due to the high nitrogen content,large specific surface area,and adequate slit pores,the optimized vertical nanocomposites V-PAF-GO provide abundant anchoring sites for metal NPs,leading to ultrafine Co NPs(1.4 nm).The resultant Co/V-PAF-GO catalyst shows an extraordinary catalytic activity for ammonia borane(AB)methanolysis,yielding a turnover frequency value of 47.6 min−1 at 25°C,comparable to the most effective non-noble-metal catalysts ever reported for AB methanolysis.Experimental and density functional theory studies demonstrate that the electron-donating effect of N species of PAF positively corresponds to the low barrier in methanol molecule activation,and the cleavage of the O–H bond in CH3OH has been proven to be the rate-determining step for AB methanolysis.This work presents a versatile step-growth strategy to prepare a vertically oriented PAF on GO to solve the stacking problem of 2D materials,which will be used to fabricate other novel 2D or 2D–2D materials with controllable orientation for various applications. 展开更多
关键词 2D-2D materials ammonia borane graphene oxide METHANOLYSIS porous aromatic frameworks
下载PDF
Quasi-static and low-velocity impact mechanical behaviors of entangled porous metallic wire material under different temperatures
12
作者 Yi-wan Wu Hu Cheng +3 位作者 Shang-zhou Li Yu Tang Hong-bai Bai Chun-hong Lu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期143-152,共10页
To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire m... To improve the defense capability of military equipment under extreme conditions,impact-resistant and high-energy-consuming materials have to be developed.The damping characteristic of entangled porous metallic wire materials(EPMWM)for vibration isolation was previously investigated.In this paper,a study focusing on the impact-resistance of EPMWM with the consideration of ambient temperature is presented.The quasi-static and low-velocity impact mechanical behavior of EPMWM under different temperatures(25℃-300℃)are systematically studied.The results of the static compression test show that the damping energy dissipation of EPMWM increases with temperature while the nonlinear damping characteristics are gradually enhanced.During the impact experiments,the impact energy loss rate of EPMWM was between 65%and 85%,while the temperatures increased from 25℃to 300℃.Moreover,under the same drop impact conditions,the overall deformation of EPMWM decreases in the temperature range of 100℃-200℃.On the other hand,the impact stiffness,energy dissipation,and impact loss factor of EPMWM significantly increase with temperature.This can be attributed to an increase in temperature,which changes the thermal expansion coefficient and contact state of the internal wire helixes.Consequently,the energy dissipation mode(dry friction,air damping,and plastic deformation)of EPMWM is also altered.Therefore,the EPMWM may act as a potential candidate material for superior energy absorption applications. 展开更多
关键词 Entangled porous metallic wire material Low-velocity impact High temperature Energy dissipation characteristics Mechanical behavior
下载PDF
Numerical and experimental evaluation for density-related thermal insulation capability of entangled porous metallic wire material
13
作者 Tao Zhou Rong-zheng Fang +3 位作者 Di Jia Pei Yang Zhi-ying Ren Hong-bai Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期177-188,共12页
Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great signifi... Entangled porous metallic wire material(EPMWM)has the potential as a thermal insulation material in defence and engineering.In order to optimize its thermophysical properties at the design stage,it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects.In the present work,virtual manufacturing technology(VMT)was developed to restore the physics-based 3D model of EPMWM.On this basis,the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM,and then the spiral unit containing unique structural information are further extracted and counted.In particular,the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity(ETC)of EPMWM.Finally,the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest.The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions.The numerical prediction is consistent with the experimental result and the average error is less than 4%. 展开更多
关键词 Entangled porous metallic wire material (EPMWM) Virtual manufacturing technology(VMT) Thermal resistance network Effective thermal conductivity(ETC) Thermal insulation factor
下载PDF
Mechanism of anti-arterial thrombosis of Dahuangzhecong Fang screened by Ti-Al intermetallic compound porous material 被引量:2
14
作者 万玲 王战义 +6 位作者 魏星 李佶阳 钟广伟 段晓鹏 贺福元 江垚 王东生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3156-3160,共5页
The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, ... The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis. 展开更多
关键词 Ti-Al intermetallic compound porous materials Dahuangzhecong Fang arterial thrombosis isolated Chinese medicine
下载PDF
Theoretical prediction of effective elastic constants for new intermetallic compound porous material 被引量:2
15
作者 苏淑兰 饶秋华 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1090-1097,共8页
Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants ... Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application. 展开更多
关键词 intermetallic compound porous material effective elastic modulus Plateau structure energy method
下载PDF
Fractal dimension for porous metal materials of FeCrAl fiber 被引量:1
16
作者 王建忠 奚正平 +3 位作者 汤慧萍 黄卫东 朱纪磊 敖庆波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1046-1051,共6页
The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was d... The FeCrA1 fiber was used to prepare porous metal materials with air-laid technology, and then followed by sintering at 1300 ℃ for a holding period of 2 h in the vacuum. In addition, a novel fractal soft, which was developed based on the fractal theory and the computer image processing technology, was explored to describe the pore structure of porous metal materials. Furthermore, the fractal dimension of pore structure was calculated by the soft and the effects of magnification and porosity on ffactal dimension were also discussed. The results show that the fractal dimension decreases with increase in the magnification, while it increases continuously with the porosity enhancing. The interrelationship between the fractal dimension and the magnification or porosity can be presented by the equation of D=α_0exp(-x/α_1)+α_2和D=k_2-(k_1-k_2)/[1+exp((θ-k_0)/k_3)], respectively. 展开更多
关键词 porous metal materials FeCrA1 fiber fractal dimension POROSITY MAGNIFICATION
下载PDF
A Model for Mechanical Property Evaluation of the Periodic Porous Low-k Materials by SAW
17
作者 李志国 姚素英 +1 位作者 肖夏 白茂森 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第11期1722-1728,共7页
The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize... The influence of the distribution of nano-pores on the mechanical properties evaluation of porous low-k films by surface acoustic waves (SAW) is studied. A theoretical SAW propagation model is set up to characterize the periodic porous dielectrics by transversely isotropic symmetry. The theoretical deductions of SAW propagating in the low-k film/Si substrate layered structure are given in detail. The dispersive characteristics of SAW in differ- ent propagation directions and the effects of the Young's moduli E, E′ and shear modulus G′ of the films on these dispersive curves are found. Computational results show that E′ and G′ cannot be measured along the propagation direction that is perpendicular to the nano-pores' direction. 展开更多
关键词 periodic porous materials low-k dielectrics transversely isotropic symmetry mechanical proper ty SAW measurement
下载PDF
Volumetric extraction of porous materials based on octree algorithm
18
作者 罗守华 李光 顾宁 《Journal of Southeast University(English Edition)》 EI CAS 2010年第4期537-540,共4页
Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree n... Through the octree data structure analysis,a volumetric dataset of closed-cell porous materials is converted into a dataset of hierarchical octree nodes,and then the specific traversal search algorithm on the octree nodes is depicted in details,which is involved in six steps of the volume growth model and one step of the volume decomposition model.Moreover,the conditions of both the proceeding traversal and three possibilities of terminating are given,and the traversal algorithm of completeness is proved from a theoretical perspective.Finally,using a simulated volumetric dataset of columnar pores,the extracting effectiveness of the octree traversal algorithm is verified.The results show that the volume and the distribution information of pores can be successfully extracted by the proposed algorithm,which builds a solid foundation for a more effective performance analysis of porous materials. 展开更多
关键词 OCTREE closed-cell porous materials volume of pores traversal algorithm
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
19
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Germanium-Carbdiyne: A 3D Well-Defined sp-Hybridized Carbon-Based Material with Superhigh Li Storage Property 被引量:1
20
作者 Ze Yang Xin Ren +6 位作者 Yuwei Song Xiaodong Li Chunfang Zhang Xiuli Hu Jianjiang He Jiazhu Li Changshui Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期199-206,共8页
Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp... Carbyne delivers various excellent properties for the existence of the larger number of sp-hybridized carbon atoms.Here,a 3D well-defined porous carbon material germanium-carbdiyne(Ge-CDY)which is comprised of only sp-hybridized carbon atoms bridging by Ge atoms has been developed and investigated.The unique diamond-like structure constructed by linear butadiyne bonds and sp 3-hybridized Ge atoms ensures the stability of Ge-CDY.The large percentage of conjugated alkyne bonds composed of sp-C guarantees the good conductivity and the low band gap,which were further confirmed experimentally and theoretically,endowing Ge-CDY with the potential in electrochemical applications.The well-defined 3D carbon skeleton of Ge-CDY provides abundant uniform nanopores,which is suitable for metal ions storage and diffusion.Further half-cell evaluation also demonstrated Ge-CDY exhibited an excellent performance in lithium storage.All those indicating sp-hybridized carbon-based materials can exhibit great potential to possess excellent properties and be applied in the field of energy,electronic,and so on. 展开更多
关键词 3D porous material electrochemical energy storage germanium-carbdiyne lithium storage theoretical predictions
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部