Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by flee-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox ...Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by flee-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox initiator system and alcohols porogens. The morphology, temperature and pH sensitive swelling behavior, and swelling kinetics of the resulting hydrogels were investigated. It was found that alcohol type and concentration had great influences on the pore structure and porosity of hydrogels. The pore size of hydrogel increases with the moderate increase of the length of alcohol alkyl chain. However, a further increase of alkyl length would result in the formation of cauliflower-like structure and the decrease of pore size. The porosity of hydrogels increases with the increase of porogen concentration in the polymerization medium. The hydrogels with macroporous structure swell or shrink much faster in response to the change of pH in comparison with the conventional hydrogel without macroporous structure. Furthermore, the response rate is closely related to the porosity of the hydrogels, which could be easily controlled by modulating the concentration of the porogen in the medium. The circular swelling behavior of hydrogels indicated the formation of a relaxing three-dimensional network.展开更多
Drug resistance is one of the major obstacles in the drug therapy of cancers.Efforts in this area in pre-clinical research have focused on developing novel platforms to evaluate and decrease drug resistance.In this pa...Drug resistance is one of the major obstacles in the drug therapy of cancers.Efforts in this area in pre-clinical research have focused on developing novel platforms to evaluate and decrease drug resistance.In this paper,inspired by the structure of hives where swarms live and breed,we propose porous hydrogel arrays with a uniform pore structure for the generation of hepatoma cell spheroids and the investigation of drug resistance.The porous hydrogel arrays were fabricated using polyeth-ylene glycol diacrylate(PEGDA)hydrogel to negatively replicate a well-designed template.Benefiting from the elaborate processing of the template,the prepared porous hydrogel arrays possessed a uniform pore structure.Due to their anti-adhesion properties and the excellent biocompatibility of the PEGDA hydrogel,the hepatoma cells could form well-defined and uni-form hepatoma cell spheroids in the porous hydrogel arrays.We found that the resistant hepatoma cell spheroids showed more significant Lenvatinib resistance and a migratory phenotype compared with a two-dimensional(2D)cell culture,which reveals the reason for the failure of most 2D cell-selected drugs for in vivo applications.These features give such porous hydrogel arrays promising application prospects in the investigation of tumor cell spheroid culture and in vitro drug resistance.展开更多
In this paper,a new method combines chemical/physical crosslinking,and emulsification-foaming porogenic was adopted to prepare n-hydroxyapatite(n-HA)/polyvinyl alcohol(PVA)/chitosan(CS)porous composite hydrogel using ...In this paper,a new method combines chemical/physical crosslinking,and emulsification-foaming porogenic was adopted to prepare n-hydroxyapatite(n-HA)/polyvinyl alcohol(PVA)/chitosan(CS)porous composite hydrogel using artificial cornea scaffold materials.The fabricate conditions,including the type and amount of emulsification-foaming porogen,mixing time and speed etc.were researched.The results showed the optimal condition that the alkylphenol polyoxyethylene ether(OP)acted as emulsification-foaming porogen,with the ratio of WPVA/WOP as 3.75,and mixing 15 min with a stirring speed of 800 r·min-1.Additionally,the fabricated composite hydrogel scaffold materials possessed interconnected internal holes,a moisture content of above 65%,and tensile strength of above 6 MPa.In vitro cytotoxicity and acute systemic toxicity assay confirmed that the scaffolds did not show any cytotoxicity.The as-prepared hydrogel could be a promising candidate for artificial cornea scaffold material.展开更多
Wearable pressure sensors made from conductive hydrogels hold significant potential in health monitoring.However,limited pressure range(Pa to hundreds of kPa)and inadequate antibacterial properties restrict their prac...Wearable pressure sensors made from conductive hydrogels hold significant potential in health monitoring.However,limited pressure range(Pa to hundreds of kPa)and inadequate antibacterial properties restrict their practical applications in diagnostic and health evaluation.Herein,a wearable high-performance pressure sensor was assembled using a facilely prepared porous chitosan-based hydrogel,which was constructed from commercial phenolphthalein particles as a sacrificial template.The relationship between the porosity of hydrogels and sensing performance of sensors was systematically explored.Herein,the wearable pressure sensor,featuring an optimized porosity of hydrogels,exhibits an ultrawide sensing capacity from 4.83 Pa to 250 k Pa(range-to-limit ratio of 51,760)and high sensitivity throughout high pressure ranges(0.7 kPa~(-1),120–250 kPa).The presence of chitosan endows these hydrogels with outstanding antibacterial performance against E.coli and S.aureus,making them ideal candidates for use in wearable electronics.These features allow for a practical approach to monitor full-range human motion using a single device with a simple structure.展开更多
The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hya...The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hyaline cartilage is limited,timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy.In this study,we devised a biodegradable bilayered scaffold,comprising chondroitin sulfate(CS)hydrogel to regenerate chondral tissue and a porous pure zinc(Zn)scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer.The photocured CS hydrogel possessed a compressive strength of 82 kPa,while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa.Such mechanical properties are similar to values reported for cancellous bone.In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells.Upon implantation,the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model,resulting in(i)a smoother cartilage surface,(ii)more hyaline-like cartilage,and(iii)a superior integration into the adjacent host tissue.Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.展开更多
Diabetic wounds are a difficult medical challenge.Excessive secretion of matrix metalloproteinase-9(MMP-9)in diabetic wounds further degrades the extracellular matrix and growth factors and causes severe vascular dama...Diabetic wounds are a difficult medical challenge.Excessive secretion of matrix metalloproteinase-9(MMP-9)in diabetic wounds further degrades the extracellular matrix and growth factors and causes severe vascular damage,which seriously hinders diabetic wound healing.To solve these issues,a double-network porous hydrogel composed of poly(methyl methacrylate-co-acrylamide)(p(MMA-co-AM))and polyvinyl alcohol(PVA)was constructed by the high internal phase emulsion(HIPE)technique for the delivery of potassium sucrose octasulfate(PSO),a drug that can inhibit MMPs,increase angiogenesis and improve microcirculation.The hydrogel possessed a typical polyHIPE hierarchical microstructure with interconnected porous morphologies,high porosity,high specific surface area,excellent mechanical properties and suitable swelling properties.Meanwhile,the p(MMA-co-AM)/PVA@PSO hydrogel showed high drug-loading performance and effective PSO release.In addition,both in vitro and in vivo studies showed that the p(MMA-co-AM)/PVA@PSO hydrogel had good biocompatibility and significantly accelerated diabetic wound healing by inhibiting excessive MMP-9 in diabetic wounds,increasing growth factor secretion,improving vascularization,increasing collagen deposition and promoting re-epithelialization.Therefore,this study provided a reliable therapeutic strategy for diabetic wound healing,some theoretical basis and new insights for the rational design and preparation of wound hydrogel dressings with high porosity,high drug-loading performance and excellent mechanical properties.展开更多
With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal opera...With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal operation of electronic equipment but also threatens human health.Therefore,it is urgent to develop high-performance EMI shielding materials.The advent of hydrogel-based materials has given EMI shields a novel option.Hydrogels combined with conductive functional materials have good mechanical flexibility,fatigue durability,and even high stretchability,which are beneficial for a wide range of applications,especially in EMI shielding and some flexible functional devices.Herein,the current progress of hydrogel-based EMI shields was reviewed,in the meanwhile,some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included.In the outlook,we suggested some promising development directions for the hydrogel-based EMI shields,by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.展开更多
Background and Originality Content Hydrogels,which retain a large amount of water,possess tunable porous three-dimensional nanostructure.They are known to resemble human tissue that can offer many advantages in biomed...Background and Originality Content Hydrogels,which retain a large amount of water,possess tunable porous three-dimensional nanostructure.They are known to resemble human tissue that can offer many advantages in biomedical applications such as tissue engineering,drug delivery and surgical dressings.1141 Stimuli-responsive hydrogels,referred as smart hydrogels can rapidly respond in a controlled manner to external stimuli,such as temperature,pH,light,etc.[s]In particular,the thermal-responsive hydrogels exhibit sol-to-gel phase transition upon heating up to lower critical gelation temperatures(CGTs).展开更多
Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previou...Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previously been produced from a three-dimensional(3D)reduced graphene oxide(r-GO)hydrogel by evaporation-induced drying.Here the mechanism of such a network shrinkage in r-GO hydrogel is specifically illustrated by the use of water and 1,4-dioxane,which have a sole difference in surface tension.As a result,the surface tension of the evaporating solvent determines the capillary forces in the nanochannels,which causes shrinkage of the r-GO network.More promisingly,the selection of a solvent with a known surface tension can precisely tune the microstructure associated with the density and porosity of the resulting porous carbon,rendering the porous carbon materials great potential in practical devices with high volumetric performance.展开更多
The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment.In this study,we constructed an in...The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment.In this study,we constructed an integrated three-dimensional scaffold material using porous tantalum(pTa),gelatin nanoparticles(GNPs)hydrogel,and seeded with bone marrow mesenchymal stem cells(BMSCs)-derived endothelial cells(ECs)for vascular tissue engineering.The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing,scanning electron microscopy,cell counting kit,and live-cell assay.The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay.BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice.Four weeks after the operation,the scaffold material was evaluated by histomorphology.The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed.Our in vivo results suggested that 28 days after implantation,the formation of the stable capillary-like network in scaffold material could be promoted significantly.The novel,integrated pTa-GNPs hydrogel scaffold is biocompatible with the host,and exhibits biomechanical and angiogenic properties.Moreover,combined with BMSCs-derived ECs,it could construct vascular engineered tissue in vivo.This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.展开更多
Transition metal nitrides(TMNs)and their composites with carbon materials hold tremendous potential for supercapacitor(SC)electrodes because of their excellent electronic conductivity and electrochemical activity.Howe...Transition metal nitrides(TMNs)and their composites with carbon materials hold tremendous potential for supercapacitor(SC)electrodes because of their excellent electronic conductivity and electrochemical activity.However,realizing cycling stable TMN/carbon-based supercapacitors with economically viable and environmentally-friendly approaches remains a significant challenge.Significantly,polyacrylamide(PAM)hydrogel,as a water-soluble linear polymer electrolyte,is expected to be a remarkable candidate precursor for preparing N-doped porous carbon(NPC)due to the high contents of carbon and nitrogen elements.In this study,vanadium nitride(VN)embedded in PAM hydrogel-derived NPC was fabricated successfully via an ammonia-free process.The VN/NPC delivers a high specific capacitance of 198.3 F g^(−1)at a current density of 1 A g^(−1),with a remarkable cycling stability of 107%after 16,000 cycles.The electrochemical performances of VN/NPC compared to bare VN nanoparticles are strongly improved due to the composite structure.Additionally,the VN/NPC-based solid-state symmetric device delivers an excellent energy density of 21.97µWh cm^(−2)at a power density of 0.5 mW cm^(−2),and an outstanding cycling durability of 90.9%after 18,000 cycles.This work paves the way to design metal nitride/porous carbon materials,which also opens up unique horizons for the recovery of hydrogel electrolyte.展开更多
A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing ...A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm)allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs)with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.展开更多
Nanoscale zero-valent iron(n ZVI) particles supported on a porous, semi-interpenetrating(semi-IPN), temperature-sensitive composite hydrogel(PNIPAm-PHEMA). n ZVI@PNIPAmPHEMA, was successfully synthesized and character...Nanoscale zero-valent iron(n ZVI) particles supported on a porous, semi-interpenetrating(semi-IPN), temperature-sensitive composite hydrogel(PNIPAm-PHEMA). n ZVI@PNIPAmPHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1548 ± 0.0015 g/g and the particle size was30–100 nm. NZVI was uniformly dispersed on the pore walls inside the PNIPAm-PHEMA.Because of the well-dispersed n ZVI, the highly porous structure, and the synergistic effect of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA showed excellent reductive activity and wide p H applicability. 95% of 4-NP in 100 m L of 400 mg/L 4-NP solution with initial p H 3.0–9.0 could be completely reduced into 4-AP by about 0.0548 g of fresh supported n ZVI at 18–25 °C under stirring(110 r/min) within 45 min reaction time. A greater than 99% 4-NP degradation ratio was obtained when the initial p H was 5.0–9.0. The reduction of 4-NP by nZVI@PNIPAm-PHEMA was in agreement with the pseudo-first-order kinetics model with Kobsvalues of 0.0885–0.101 min-1.NZVI@PNIPAm-PHEMA was able to be recycled, and about 85% degradation ratio of 4-NP was obtained after its sixth reuse cycle. According to the temperature sensitivity of PNIPAmPHEMA, n ZVI@PNIPAm-PHEMA exhibited very good storage stability, and about 88.9%degradation ratio of 4-NP was obtained after its storage for 30 days. The hybrid reducer was highly efficient for the reduction of 2-NP, 3-NP, 2-chloro-4-nitrophenol and 2-chloro-4-nitrophenol. Our results suggest that PNIPAm-PHEMA could be a good potential carrier, with n ZVI@PNIPAm-PHEMA having potential value in the application of reductive degradation of nitrophenol pollutants.展开更多
Poly (vinyl alcohol) hydrogel has been perceived as a promising replacement for articular cartilage due to its superior water-absorption ability and excellent biocompatibility, but its mechanical properties are still ...Poly (vinyl alcohol) hydrogel has been perceived as a promising replacement for articular cartilage due to its superior water-absorption ability and excellent biocompatibility, but its mechanical properties are still insufficient. In this study, the poly (vinyl alcohol)/sodium tetraborate triple-network (PVA/SB TN) hydrogel was developed by repeated freeze–thaw method. Scanning electron microscopy images demonstrated that the structure of as-prepared hydrogels was three-dimensional porous network structure similar to that of natural articular cartilage. Compared to the pure PVA hydrogel, the mechanical performance of the PVA/SB TN hydrogels were improved by 116% and 461% in tensile and compressive strengths, respectively. This was mainly because that the complexation reaction between the PVA and SB strengthened the stability of the hydrogel network. Notably, the biotribological performance of PVA hydrogel has also been improved significantly. Even at high load, the friction coefficient of the PVA/SB TN hydrogel was both very low in calf serum or deionized water. This PVA/SB TN hydrogel with good mechanical property and low friction has high application potential in cartilage repair.展开更多
The synthesis of multimodal hierarchically porous materials is of great challenge by facile approach.Herein,we assemble BPO_(4) hollow spheres into macroscopic foam materials with multimodal hierarchically porous stru...The synthesis of multimodal hierarchically porous materials is of great challenge by facile approach.Herein,we assemble BPO_(4) hollow spheres into macroscopic foam materials with multimodal hierarchically porous structure by combining down-to-up process and Ostwald ripening effect.Tailored monolithic B_(2)O_(3)@BPO_(4) foams were obtained from a sticky hydrogel precursor by a one-step annealing process.The foam has the self-supporting frame of BPO_(4) hollow spheres with covering B_(2)O_(3) nanowires and shows excellent permeability and relatively high surface area due to hierarchical structure.The formation mechanism of monolithic B_(2)O_(3)@BPO_(4) foams mainly undergoes inflation,particle aggregation,and Ostwald ripening process.Monolithic foams exhibit superior catalytic activity in oxidation dehydrogenation of alkanes due to the sufficient exposure of active sites over the special frame structure.Furthermore,various monolithic functionalized BPO_(4) foam composites can be easily synthesized and exhibit superior performance in different applications including the oxidation of carbon monoxide,and the self-driven removal of organic pollutants.More interestingly,we also found the sticky hydrogel precursor possesses good heat shielding effect.This work provides a new insight for constructing multimodal hierarchically porous materials with the remaining superior property of nanoscale to cope with various challenges.展开更多
Flexible pressure sensors play an important role in the field of monitoring, owing to their inherent safety and the fact that they are embedded at the material level. Capacitive pressure sensors have been proven to be...Flexible pressure sensors play an important role in the field of monitoring, owing to their inherent safety and the fact that they are embedded at the material level. Capacitive pressure sensors have been proven to be quite versatile, with the ability to change the sensitivity and monitoring range by modifying the pore structure of the dielectric layer(elastic modulus). In this paper, capacitive pressure sensors are devised, comprising hierarchical porous polydimethylsiloxane. Due to the inherent hollow and hierarchical micropore structure, the capacitive pressure sensor allows operation at a wider pressure range(~1000 kPa) while maintaining sensitivity(6.33 MPa-1) in the range of 0–300 k Pa. Subsequently, the capacitance output model of the sensor is optimized, which provides an overall approximation of the experimental values for the sensor performance. Additionally, the signal response of the“break up the whole into parts”(by analysis of the whole sensor in parts) is simulated and outputted by the finite element analysis. The simplified analysis model provides a good understanding of the relationship between the local pressure and the signal response of the pressure sensor. For practical applications, seal monitoring and rubber wheel pressure array system are tested, and the proposed sensor shows sufficient potential for application in large deformation elastomer products.展开更多
Thermo-electrochemical cells(TECs)provide a new potential for self-powered devices by converting heat energy into electricity.However,challenges still remain in the fabrication of flexible and tough gel electrolytes a...Thermo-electrochemical cells(TECs)provide a new potential for self-powered devices by converting heat energy into electricity.However,challenges still remain in the fabrication of flexible and tough gel electrolytes and their compat-ibility with redox actives;otherwise,contact problems exist between electrolytes and electrodes during stretching or twisting.Here,a novel robust and neutral hydrogel with outstanding stretchability was developed via double-network of crosslinked carboxymethyl chitosan and polyacrylamide,which accommodated both n-type(Fe^(2+)/Fe^(3+))and p-type([Fe(CN)_(6)]^(3-)/[Fe(CN)_(6)]^(4-))redox couples and maintained stretchability(>300%)and recoverability(95%compression).Moreover,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)textile elec-trodes with porous structure are integrated into gel electrolytes that avoid contact issues and effectively boost the P_(max) of n-and p-type thermocell by 76%and 26%,respectively.The optimized thermocell exhibits a quick current density response and is continually fully operational under deformations,which satisfies the working conditions of wearable devices.Multiple thermocells(four pairs)are effectively connected in alternating single n-and p-type cells in series and out-putted nearly 74.3 mV atΔT=10℃.The wearable device is manufactured into a soft-pack thermocells to successfully harvest human body heat and illuminate an LED,demonstrating the potential of the actual application of the thermocell devices.展开更多
文摘Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by flee-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox initiator system and alcohols porogens. The morphology, temperature and pH sensitive swelling behavior, and swelling kinetics of the resulting hydrogels were investigated. It was found that alcohol type and concentration had great influences on the pore structure and porosity of hydrogels. The pore size of hydrogel increases with the moderate increase of the length of alcohol alkyl chain. However, a further increase of alkyl length would result in the formation of cauliflower-like structure and the decrease of pore size. The porosity of hydrogels increases with the increase of porogen concentration in the polymerization medium. The hydrogels with macroporous structure swell or shrink much faster in response to the change of pH in comparison with the conventional hydrogel without macroporous structure. Furthermore, the response rate is closely related to the porosity of the hydrogels, which could be easily controlled by modulating the concentration of the porogen in the medium. The circular swelling behavior of hydrogels indicated the formation of a relaxing three-dimensional network.
基金supported by the National Key Research and Development Program of China(No.2020YFA0908200)the National Natural Science Foundation of China(Nos.52073060,61927805,81974312,and 81501823)+5 种基金the Natural Science Foundation of Jiangsu Province(No.BE2018707)the Shenzhen Fundamental Research Program(No.JCYJ20190813152616459)the Zhejiang Provincial Natural Science Foundation of China(Nos.LY18H160049 and LQ19H160008)the Medical Scientific Research of Zhejiang Province(No.2017KY459)Wenzhou Municipal Science and Technology Bureau(No.Y20190203)Wenzhou Institute,University of Chinese Academy of Sciences’s startup fund(No.WIUCASQD2019007).
文摘Drug resistance is one of the major obstacles in the drug therapy of cancers.Efforts in this area in pre-clinical research have focused on developing novel platforms to evaluate and decrease drug resistance.In this paper,inspired by the structure of hives where swarms live and breed,we propose porous hydrogel arrays with a uniform pore structure for the generation of hepatoma cell spheroids and the investigation of drug resistance.The porous hydrogel arrays were fabricated using polyeth-ylene glycol diacrylate(PEGDA)hydrogel to negatively replicate a well-designed template.Benefiting from the elaborate processing of the template,the prepared porous hydrogel arrays possessed a uniform pore structure.Due to their anti-adhesion properties and the excellent biocompatibility of the PEGDA hydrogel,the hepatoma cells could form well-defined and uni-form hepatoma cell spheroids in the porous hydrogel arrays.We found that the resistant hepatoma cell spheroids showed more significant Lenvatinib resistance and a migratory phenotype compared with a two-dimensional(2D)cell culture,which reveals the reason for the failure of most 2D cell-selected drugs for in vivo applications.These features give such porous hydrogel arrays promising application prospects in the investigation of tumor cell spheroid culture and in vitro drug resistance.
基金Supported by the Key Technology R&D Program of Shenzhen Municipal(JSGG20120614164013545)Basic Research Program of Shenzhen Municipal(JCYJ20130329102614715).
文摘In this paper,a new method combines chemical/physical crosslinking,and emulsification-foaming porogenic was adopted to prepare n-hydroxyapatite(n-HA)/polyvinyl alcohol(PVA)/chitosan(CS)porous composite hydrogel using artificial cornea scaffold materials.The fabricate conditions,including the type and amount of emulsification-foaming porogen,mixing time and speed etc.were researched.The results showed the optimal condition that the alkylphenol polyoxyethylene ether(OP)acted as emulsification-foaming porogen,with the ratio of WPVA/WOP as 3.75,and mixing 15 min with a stirring speed of 800 r·min-1.Additionally,the fabricated composite hydrogel scaffold materials possessed interconnected internal holes,a moisture content of above 65%,and tensile strength of above 6 MPa.In vitro cytotoxicity and acute systemic toxicity assay confirmed that the scaffolds did not show any cytotoxicity.The as-prepared hydrogel could be a promising candidate for artificial cornea scaffold material.
基金supported by the National Natural Science Foundation of China(Grant No.62101605)Zhuhai Fundamental and Application Research(Grant No.2220004002896)+1 种基金Guangdong Introducing Innovative and Entrepreneurial Teams Program(Grant No.2019ZT08Z656)Shenzhen Science and Technology Program(Grant No.KQTD20190929-172522248)。
文摘Wearable pressure sensors made from conductive hydrogels hold significant potential in health monitoring.However,limited pressure range(Pa to hundreds of kPa)and inadequate antibacterial properties restrict their practical applications in diagnostic and health evaluation.Herein,a wearable high-performance pressure sensor was assembled using a facilely prepared porous chitosan-based hydrogel,which was constructed from commercial phenolphthalein particles as a sacrificial template.The relationship between the porosity of hydrogels and sensing performance of sensors was systematically explored.Herein,the wearable pressure sensor,featuring an optimized porosity of hydrogels,exhibits an ultrawide sensing capacity from 4.83 Pa to 250 k Pa(range-to-limit ratio of 51,760)and high sensitivity throughout high pressure ranges(0.7 kPa~(-1),120–250 kPa).The presence of chitosan endows these hydrogels with outstanding antibacterial performance against E.coli and S.aureus,making them ideal candidates for use in wearable electronics.These features allow for a practical approach to monitor full-range human motion using a single device with a simple structure.
基金supported by grants from the National Natural Science Foundation of China(grant numbers:82072403,82072428,82272571,82267020,82372418,52201294)Beijing Natural Science Foundation Haidian Original Innovation Joint Fund Frontier Project(L212052)+2 种基金Beijing Natural Science Foundation(L212014)Prosperos project,funded by the Interreg VA Flanders-The Netherlands program,CCI Grant No.2014TC16RFCB04the Interdisciplinary Centre for Clinical Research(IZKF)of the Faculty of Medicine of the RWTH Aachen University(OC1-1).
文摘The regeneration of osteochondral tissue necessitates the re-establishment of a gradient owing to the unique characteristics and healing potential of the chondral and osseous phases.As the self-healing capacity of hyaline cartilage is limited,timely mechanical support during neo-cartilage formation is crucial to achieving optimal repair efficacy.In this study,we devised a biodegradable bilayered scaffold,comprising chondroitin sulfate(CS)hydrogel to regenerate chondral tissue and a porous pure zinc(Zn)scaffold for regeneration of the underlying bone as mechanical support for the cartilage layer.The photocured CS hydrogel possessed a compressive strength of 82 kPa,while the porous pure Zn scaffold exhibited a yield strength of 11 MPa and a stiffness of 0.8 GPa.Such mechanical properties are similar to values reported for cancellous bone.In vitro biological experiments demonstrated that the bilayered scaffold displayed favorable cytocompatibility and promoted chondrogenic and osteogenic differentiation of bone marrow stem cells.Upon implantation,the scaffold facilitated the simultaneous regeneration of bone and cartilage tissue in a porcine model,resulting in(i)a smoother cartilage surface,(ii)more hyaline-like cartilage,and(iii)a superior integration into the adjacent host tissue.Our bilayered scaffold exhibits significant potential for clinical application in osteochondral regeneration.
基金supported by the National Key Research and Development Program of China(2022YFB4601402)the National Natural Science Foundation of China(32201109,51772233,82072446)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2022B1515120052,2021A1515110557)the Key Basic Research Program of Shenzhen(JCYJ20200109150218836)the Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory(HJL202202A002)the Trauma Microsurgery Clinical Medical Research Center of Hubei Province and the Health Commission of Hubei Province Medical Leading Talent Project(LJ20200405).
文摘Diabetic wounds are a difficult medical challenge.Excessive secretion of matrix metalloproteinase-9(MMP-9)in diabetic wounds further degrades the extracellular matrix and growth factors and causes severe vascular damage,which seriously hinders diabetic wound healing.To solve these issues,a double-network porous hydrogel composed of poly(methyl methacrylate-co-acrylamide)(p(MMA-co-AM))and polyvinyl alcohol(PVA)was constructed by the high internal phase emulsion(HIPE)technique for the delivery of potassium sucrose octasulfate(PSO),a drug that can inhibit MMPs,increase angiogenesis and improve microcirculation.The hydrogel possessed a typical polyHIPE hierarchical microstructure with interconnected porous morphologies,high porosity,high specific surface area,excellent mechanical properties and suitable swelling properties.Meanwhile,the p(MMA-co-AM)/PVA@PSO hydrogel showed high drug-loading performance and effective PSO release.In addition,both in vitro and in vivo studies showed that the p(MMA-co-AM)/PVA@PSO hydrogel had good biocompatibility and significantly accelerated diabetic wound healing by inhibiting excessive MMP-9 in diabetic wounds,increasing growth factor secretion,improving vascularization,increasing collagen deposition and promoting re-epithelialization.Therefore,this study provided a reliable therapeutic strategy for diabetic wound healing,some theoretical basis and new insights for the rational design and preparation of wound hydrogel dressings with high porosity,high drug-loading performance and excellent mechanical properties.
基金supported by the Provincial Key Research and Development Program of Shandong(Nos.2019JZZY010312 and 2021ZLGX01)New 20 Funded Programs for Universities of Jinan(No.2021GXRC036)Shenzhen municipal special fund for guiding local scientific and technological development(No.China2021Szvup071).
文摘With the rapid development of the electronic industry and wireless communication technology,electromagnetic interference(EMI)or pollution has been increasingly serious.This not only severely endangers the normal operation of electronic equipment but also threatens human health.Therefore,it is urgent to develop high-performance EMI shielding materials.The advent of hydrogel-based materials has given EMI shields a novel option.Hydrogels combined with conductive functional materials have good mechanical flexibility,fatigue durability,and even high stretchability,which are beneficial for a wide range of applications,especially in EMI shielding and some flexible functional devices.Herein,the current progress of hydrogel-based EMI shields was reviewed,in the meanwhile,some novel studies about pore structure design that we believe will help advance the development of hydrogel-based EMI shielding materials were also included.In the outlook,we suggested some promising development directions for the hydrogel-based EMI shields,by which we hope to provide a reference for designing hydrogels with excellent EMI shielding performance and multifunctionalities.
基金This work was supported by the National Basic Research Program of China(Nos.2015CB931900,2012CB215500)the National Natural Science Foundation of China(Nos.21632009,21421002)+2 种基金the Key Program of the Chinese Academy of Sciences(No.KGZD-EW-T08)the Key Research Program of Frontier Sciences of CAS(No.QYZDJ-SSWSLH049)the Shanghai Rising-Star Program(No.16QA1404600)for financial support.
文摘Background and Originality Content Hydrogels,which retain a large amount of water,possess tunable porous three-dimensional nanostructure.They are known to resemble human tissue that can offer many advantages in biomedical applications such as tissue engineering,drug delivery and surgical dressings.1141 Stimuli-responsive hydrogels,referred as smart hydrogels can rapidly respond in a controlled manner to external stimuli,such as temperature,pH,light,etc.[s]In particular,the thermal-responsive hydrogels exhibit sol-to-gel phase transition upon heating up to lower critical gelation temperatures(CGTs).
基金This work was supported by the National Natural Science Fund for the Distinguished Young Scholars,China(51525204)the National Natural Science Foundation of China(51702229 and 51872195)the CAS Key Laboratory of Carbon Materials(KLCM KFJJ1704).
文摘Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previously been produced from a three-dimensional(3D)reduced graphene oxide(r-GO)hydrogel by evaporation-induced drying.Here the mechanism of such a network shrinkage in r-GO hydrogel is specifically illustrated by the use of water and 1,4-dioxane,which have a sole difference in surface tension.As a result,the surface tension of the evaporating solvent determines the capillary forces in the nanochannels,which causes shrinkage of the r-GO network.More promisingly,the selection of a solvent with a known surface tension can precisely tune the microstructure associated with the density and porosity of the resulting porous carbon,rendering the porous carbon materials great potential in practical devices with high volumetric performance.
基金supported by Postdoctoral Science Foundation of China(No.194012)National Natural Science Foundation of China(No.82172398)+1 种基金Science&Technological Convenience Foundation of Dalian(No.2020JJ27SN076)Doctoral Research Starting Foundation of Affiliated Zhongshan Hospital of Dalian University(No.DLDXZSYY-BK201809).
文摘The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment.In this study,we constructed an integrated three-dimensional scaffold material using porous tantalum(pTa),gelatin nanoparticles(GNPs)hydrogel,and seeded with bone marrow mesenchymal stem cells(BMSCs)-derived endothelial cells(ECs)for vascular tissue engineering.The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing,scanning electron microscopy,cell counting kit,and live-cell assay.The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay.BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice.Four weeks after the operation,the scaffold material was evaluated by histomorphology.The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed.Our in vivo results suggested that 28 days after implantation,the formation of the stable capillary-like network in scaffold material could be promoted significantly.The novel,integrated pTa-GNPs hydrogel scaffold is biocompatible with the host,and exhibits biomechanical and angiogenic properties.Moreover,combined with BMSCs-derived ECs,it could construct vascular engineered tissue in vivo.This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.
基金supported by the National Natural Science Foundation of China(Grant No.52272251)the Users with Excellence Program of Hefei Science Center CAS(No.2021HSCUE009).
文摘Transition metal nitrides(TMNs)and their composites with carbon materials hold tremendous potential for supercapacitor(SC)electrodes because of their excellent electronic conductivity and electrochemical activity.However,realizing cycling stable TMN/carbon-based supercapacitors with economically viable and environmentally-friendly approaches remains a significant challenge.Significantly,polyacrylamide(PAM)hydrogel,as a water-soluble linear polymer electrolyte,is expected to be a remarkable candidate precursor for preparing N-doped porous carbon(NPC)due to the high contents of carbon and nitrogen elements.In this study,vanadium nitride(VN)embedded in PAM hydrogel-derived NPC was fabricated successfully via an ammonia-free process.The VN/NPC delivers a high specific capacitance of 198.3 F g^(−1)at a current density of 1 A g^(−1),with a remarkable cycling stability of 107%after 16,000 cycles.The electrochemical performances of VN/NPC compared to bare VN nanoparticles are strongly improved due to the composite structure.Additionally,the VN/NPC-based solid-state symmetric device delivers an excellent energy density of 21.97µWh cm^(−2)at a power density of 0.5 mW cm^(−2),and an outstanding cycling durability of 90.9%after 18,000 cycles.This work paves the way to design metal nitride/porous carbon materials,which also opens up unique horizons for the recovery of hydrogel electrolyte.
基金financial support from National Natural Science Foundation of China(Nos.51902222,51603142,U1610255)Key Laboratory of Yarn Materials Forming and Composite Processing Technology,Zhejiang Province(No.MTC2019-03)+2 种基金Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Nos.2019L0164 and 2019L0255)the Shanxi Provincial Key Innovative Research Team in Science and Technology(Nos.2015013002-10 and 201605D131045-10)Key R&D Program of Shanxi Province(International Cooperation,No.201903D421077)。
文摘A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole(PPy)hydrogel as a precursor.This design of PPy hydrogel precursor containing molecular-scale grids(diameter~2.0 nm)allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process.A subsequent activation step produces activated porous carbons(APCs)with tailored pore structures,which renders the APCs abundant subnanopores on their surface to increase the specific capacitance as extra capacitance sites.Coupled with large specific surface area and abundant heteroatoms,the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230 F/g for solid-state supercapacitor.The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg,which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles.Moreover,this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.
基金supported by the National Natural Science Foundation of China(No.51508233)the Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment
文摘Nanoscale zero-valent iron(n ZVI) particles supported on a porous, semi-interpenetrating(semi-IPN), temperature-sensitive composite hydrogel(PNIPAm-PHEMA). n ZVI@PNIPAmPHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1548 ± 0.0015 g/g and the particle size was30–100 nm. NZVI was uniformly dispersed on the pore walls inside the PNIPAm-PHEMA.Because of the well-dispersed n ZVI, the highly porous structure, and the synergistic effect of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA showed excellent reductive activity and wide p H applicability. 95% of 4-NP in 100 m L of 400 mg/L 4-NP solution with initial p H 3.0–9.0 could be completely reduced into 4-AP by about 0.0548 g of fresh supported n ZVI at 18–25 °C under stirring(110 r/min) within 45 min reaction time. A greater than 99% 4-NP degradation ratio was obtained when the initial p H was 5.0–9.0. The reduction of 4-NP by nZVI@PNIPAm-PHEMA was in agreement with the pseudo-first-order kinetics model with Kobsvalues of 0.0885–0.101 min-1.NZVI@PNIPAm-PHEMA was able to be recycled, and about 85% degradation ratio of 4-NP was obtained after its sixth reuse cycle. According to the temperature sensitivity of PNIPAmPHEMA, n ZVI@PNIPAm-PHEMA exhibited very good storage stability, and about 88.9%degradation ratio of 4-NP was obtained after its storage for 30 days. The hybrid reducer was highly efficient for the reduction of 2-NP, 3-NP, 2-chloro-4-nitrophenol and 2-chloro-4-nitrophenol. Our results suggest that PNIPAm-PHEMA could be a good potential carrier, with n ZVI@PNIPAm-PHEMA having potential value in the application of reductive degradation of nitrophenol pollutants.
基金supported by National Natural Science Foundation of China(Grant No.51975296)Jiangsu Key Laboratory of Advanced Micro/Nano Materials and Technologies.
文摘Poly (vinyl alcohol) hydrogel has been perceived as a promising replacement for articular cartilage due to its superior water-absorption ability and excellent biocompatibility, but its mechanical properties are still insufficient. In this study, the poly (vinyl alcohol)/sodium tetraborate triple-network (PVA/SB TN) hydrogel was developed by repeated freeze–thaw method. Scanning electron microscopy images demonstrated that the structure of as-prepared hydrogels was three-dimensional porous network structure similar to that of natural articular cartilage. Compared to the pure PVA hydrogel, the mechanical performance of the PVA/SB TN hydrogels were improved by 116% and 461% in tensile and compressive strengths, respectively. This was mainly because that the complexation reaction between the PVA and SB strengthened the stability of the hydrogel network. Notably, the biotribological performance of PVA hydrogel has also been improved significantly. Even at high load, the friction coefficient of the PVA/SB TN hydrogel was both very low in calf serum or deionized water. This PVA/SB TN hydrogel with good mechanical property and low friction has high application potential in cartilage repair.
基金supported by the National Natural Science Foundation of China(No.22072024).
文摘The synthesis of multimodal hierarchically porous materials is of great challenge by facile approach.Herein,we assemble BPO_(4) hollow spheres into macroscopic foam materials with multimodal hierarchically porous structure by combining down-to-up process and Ostwald ripening effect.Tailored monolithic B_(2)O_(3)@BPO_(4) foams were obtained from a sticky hydrogel precursor by a one-step annealing process.The foam has the self-supporting frame of BPO_(4) hollow spheres with covering B_(2)O_(3) nanowires and shows excellent permeability and relatively high surface area due to hierarchical structure.The formation mechanism of monolithic B_(2)O_(3)@BPO_(4) foams mainly undergoes inflation,particle aggregation,and Ostwald ripening process.Monolithic foams exhibit superior catalytic activity in oxidation dehydrogenation of alkanes due to the sufficient exposure of active sites over the special frame structure.Furthermore,various monolithic functionalized BPO_(4) foam composites can be easily synthesized and exhibit superior performance in different applications including the oxidation of carbon monoxide,and the self-driven removal of organic pollutants.More interestingly,we also found the sticky hydrogel precursor possesses good heat shielding effect.This work provides a new insight for constructing multimodal hierarchically porous materials with the remaining superior property of nanoscale to cope with various challenges.
基金supported by the National Natural Science Foundation of China(Grant No.52075119)。
文摘Flexible pressure sensors play an important role in the field of monitoring, owing to their inherent safety and the fact that they are embedded at the material level. Capacitive pressure sensors have been proven to be quite versatile, with the ability to change the sensitivity and monitoring range by modifying the pore structure of the dielectric layer(elastic modulus). In this paper, capacitive pressure sensors are devised, comprising hierarchical porous polydimethylsiloxane. Due to the inherent hollow and hierarchical micropore structure, the capacitive pressure sensor allows operation at a wider pressure range(~1000 kPa) while maintaining sensitivity(6.33 MPa-1) in the range of 0–300 k Pa. Subsequently, the capacitance output model of the sensor is optimized, which provides an overall approximation of the experimental values for the sensor performance. Additionally, the signal response of the“break up the whole into parts”(by analysis of the whole sensor in parts) is simulated and outputted by the finite element analysis. The simplified analysis model provides a good understanding of the relationship between the local pressure and the signal response of the pressure sensor. For practical applications, seal monitoring and rubber wheel pressure array system are tested, and the proposed sensor shows sufficient potential for application in large deformation elastomer products.
基金funded by the National Natural Science Foundation of China(82201153)the Natural Science Foundation of Shandong Province(ZR2022QH_(2)76)+3 种基金the National Key Research and Development Program of China(2023YFE0206700)the Key Research and Development Program of Shandong Province(2021ZDSYS14)the Academic Promotion Program of Shandong First Medical University(2019ZL001 and 2019RC008)the Taishan Scholar Program(20161059).
基金National Key R&D Program of China,Grant/Award Number:2020YFA0711500National Natural Science Foundation of China,Grant/Award Numbers:52273248,52303238,52002050+2 种基金Key Project of Natural Science Foundation of Tianjin City,Grant/Award Number:21JCZDJC00010Science&Technology Department of Sichuan Province,China,Grant/Award Number:2023NSFSC0993Australian Research Council,Grant/Award Numbers:DP170102320,CE140100012。
文摘Thermo-electrochemical cells(TECs)provide a new potential for self-powered devices by converting heat energy into electricity.However,challenges still remain in the fabrication of flexible and tough gel electrolytes and their compat-ibility with redox actives;otherwise,contact problems exist between electrolytes and electrodes during stretching or twisting.Here,a novel robust and neutral hydrogel with outstanding stretchability was developed via double-network of crosslinked carboxymethyl chitosan and polyacrylamide,which accommodated both n-type(Fe^(2+)/Fe^(3+))and p-type([Fe(CN)_(6)]^(3-)/[Fe(CN)_(6)]^(4-))redox couples and maintained stretchability(>300%)and recoverability(95%compression).Moreover,poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)textile elec-trodes with porous structure are integrated into gel electrolytes that avoid contact issues and effectively boost the P_(max) of n-and p-type thermocell by 76%and 26%,respectively.The optimized thermocell exhibits a quick current density response and is continually fully operational under deformations,which satisfies the working conditions of wearable devices.Multiple thermocells(four pairs)are effectively connected in alternating single n-and p-type cells in series and out-putted nearly 74.3 mV atΔT=10℃.The wearable device is manufactured into a soft-pack thermocells to successfully harvest human body heat and illuminate an LED,demonstrating the potential of the actual application of the thermocell devices.