A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are e...A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are estimated by HNN. Boththe nominal model of the healthy system and HNN training models corresponding to everyoperating point are recognized. In addition, the anticipated fault models corresponding toevery kind of fault and every operating point are obtaind in advance. The real systemmodel parameters of the system estimated by generalization process of HNN are matchedwith the nominal models of the healthy system and anticipated fault models. Consequent-ly, the final result of fault detection and diagnosis is acquired. The approach to fault diag-nosis is used in an aircraft actuating poisition servo system and the simulation resu1t is re-ported.展开更多
文摘A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are estimated by HNN. Boththe nominal model of the healthy system and HNN training models corresponding to everyoperating point are recognized. In addition, the anticipated fault models corresponding toevery kind of fault and every operating point are obtaind in advance. The real systemmodel parameters of the system estimated by generalization process of HNN are matchedwith the nominal models of the healthy system and anticipated fault models. Consequent-ly, the final result of fault detection and diagnosis is acquired. The approach to fault diag-nosis is used in an aircraft actuating poisition servo system and the simulation resu1t is re-ported.