Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of...Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.展开更多
A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis o...A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.展开更多
Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controll...Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.展开更多
A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventiona...A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.展开更多
Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because ...Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because scheme design has close relationship with product structure, performance and technology cost, it is important for applying the intelligent CAD of scheme design to improve the quality and competitive level of the product. The definition and function of welding positioner are discussed in this paper. The new definition of welding positioner extends the research scope of welding positioner to welding fixture and welding positioning motion mechanism. The design process of welding fixture and positioning motion system is described, and the cased based and knowledge based design strategy of welding positioner scheme design intelligent CAD is then put forward, which lays foundation for developing proto type system of welding positioner scheme design.展开更多
A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long process...A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.展开更多
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ...The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.展开更多
Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the d...Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.展开更多
In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curv...In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.展开更多
To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and thre...To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.展开更多
Magneto-electro-elastic(MEE)materials are a specific class of advanced smart materials that simultaneouslymanifest the coupling behavior under electric,magnetic,and mechanical loads.This unique combination ofpropertie...Magneto-electro-elastic(MEE)materials are a specific class of advanced smart materials that simultaneouslymanifest the coupling behavior under electric,magnetic,and mechanical loads.This unique combination ofproperties allows MEE materials to respond to mechanical,electric,and magnetic stimuli,making them versatile forvarious applications.This paper investigates the static and time-harmonic field solutions induced by the surface loadin a three-dimensional(3D)multilayered transversally isotropic(TI)linear MEE layered solid.Green’s functionscorresponding to the applied uniform load(in both horizontal and vertical directions)are derived using the FourierBessel series(FBS)system of vector functions.By virtue of this FBS method,two sets of first-order ordinarydifferential equations(i.e.,N-type and LM-type)are obtained,with the expansion coefficients being Love numbers.It is noted that the LM-type system corresponds to the MEE-coupled P-,SV-,and Rayleigh waves,while the N-typecorresponds to the purely elastic SH-and Love waves.By applying the continuity conditions across interfaces,the solutions for each layer of the structure(from the bottom to the top)are derived using the dual-variable andposition(DVP)method.This method(i.e.,DVP)is unconditionally stable when propagating solutions throughdifferent layers.Numerical examples illustrate the impact of load types,layering,and frequency on the response ofthe structure,as well as the accuracy and convergence of the proposed approach.The numerical results are usefulin designing smart devices made of MEE solids,which are applicable to engineering fields like renewable energy.展开更多
Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA...Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.展开更多
The cooling storage ring(CSR)external-target experiment(CEE)is a spectrometer used in construction to study the properties of nuclear matter in high-baryon density regions at the Heavy-Ion Research Facility in Lanzhou...The cooling storage ring(CSR)external-target experiment(CEE)is a spectrometer used in construction to study the properties of nuclear matter in high-baryon density regions at the Heavy-Ion Research Facility in Lanzhou(HIRFL).This study presents the design,simulation,manufacturing,and testing of a half-size prototype of a multi-wire drift chamber(MWDC)for the CEE.First,the performance of the MWDC connected to homemade electronics was simulated.The results demonstrated that an energy resolution of 18.5% for 5.9-keV X-rays and a position resolution of 194μm for protons can be achieved by the current design.Because the size of the largest MWDC reached 176 cm×314 cm,a set of 98 cm×98 cm prototypes was built using the new techniques.The positioning accuracy of the anode wires in this prototype is better than 20μm.After optimization,using commercially available electronics,the prototype can achieved an energy resolution of 19.7%for a^(55)Fe X-ray source.The CEE-MWDC detector and electronics were simultaneously tested.An energy resolution of 22%was achieved for the^(55)Fe source;the track residuals were approximately 330μm for the cosmic rays.The results demonstrate that the current design and techniques meet the requirements of the CEE-MWDC array.展开更多
This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea...This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which ...High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.展开更多
The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficu...The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficult to measure in situ transport of the Agulhas leakage as well as the Agulhas retroflection position due to their intermittent nature.In this study,an innovative kinematic algorithm was designed and applied to the gridded altimeter observational data,to ascertain the longitudinal position of Agulhas retroflection,the stability of Agulhas jet stream,as well as its strength.The results show that the east-west shift of retroflection is related neither to the strength of Agulhas current nor to its stability.Further analysis uncovers the connection between the westward extension of Agulhas jet stream and an anomalous cyclonic circulation at its northern side,which is likely attributed to the local wind stress curl anomaly.To confirm the effect of local wind forcing on the east-west shift of retroflection,numerical sensitivity experiments were conducted.The results show that the local wind stress can induce a similar longitudinal shift of the retroflection as altimetry observations.Further statistical and case study indicates that whether an Agulhas ring can continuously migrate westward to the Atlantic Ocean or re-merge into the main flow depends on the retroflection position.Therefore,the westward retroflection may contribute to a stronger Agulhas leakage than the eastward retroflection.展开更多
Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information ...Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.展开更多
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission...In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.展开更多
This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is math...This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.展开更多
基金ThispaperissupportedbyNationalNatureScienceFoundation (No .5 96 35 16 0 )AdvancedUniversityDoctoralSubjectFoundation (No .980 2 1311)
文摘Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.
文摘A new intelligent control method for welding positioner is proposed. Applying an improved fuzzy controller and a variable PID controller, a two-mode intelligent coordinating controller ( TMICC ) is designed on basis of fuzzy logic and rules. The simulation and experimental results show that this control system can obtain better dynamic and static characteristics.
文摘Aiming at the robotic welding positioner with characteristic of parameter change, load change, nonlinearity, and an intelligent control system was researched and developed. This control system used a two-mode controller that based on Fuzzy and PID control method. The results of simulation show that the dynamic and steady performances of the intelligent controller are better than that of single PID or Fuzzy controller. This paper has made a detail theoretical analysis of the constitution design and real-time controlled software and brought up the design and fulfillment method of multi-task real-time control software of high precisely and numerically controlled welding positioner, which has a good result in practice.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program, No.2002AA422260).
文摘A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge, And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.
文摘Traditional CAD technique does not support the design processes such as function definition, conceptual design and preliminary design, which are most creative and play significant roles on the design quality. Because scheme design has close relationship with product structure, performance and technology cost, it is important for applying the intelligent CAD of scheme design to improve the quality and competitive level of the product. The definition and function of welding positioner are discussed in this paper. The new definition of welding positioner extends the research scope of welding positioner to welding fixture and welding positioning motion mechanism. The design process of welding fixture and positioning motion system is described, and the cased based and knowledge based design strategy of welding positioner scheme design intelligent CAD is then put forward, which lays foundation for developing proto type system of welding positioner scheme design.
基金supported by the National Natural Science Foundation of China(No.12075237)。
文摘A new measurement method for the spatial distribution of neutron beam flux in boron neutron capture therapy(BNCT)is being developed based on the two-dimensional Micromegas detector.To address the issue of long processing times in traditional offline position reconstruction methods,this paper proposes a field programmable gate array based online position reconstruction method utilizing the micro-time projection chamber principle.This method encapsulates key technical aspects:a self-adaptive serial link technique built upon the dynamical adjustment of the delay chain length,fast sorting,a coordinate-matching technique based on the mapping between signal timestamps and random access memory(RAM)addresses,and a precise start point-merging technique utilizing a circular combined RAM.The performance test of the selfadaptive serial link shows that the bit error rate of the link is better than 10-12 at a confidence level of 99%,ensuring reliable data transmission.The experiment utilizing the readout electronics and Micromegas detector shows a spatial resolution of approximately 1.4 mm,surpassing the current method’s resolution level of 5 mm.The beam experiment confirms that the readout electronics system can obtain the flux spatial distribution of neutron beams online,thus validating the feasibility of the position reconstruction method.The online position reconstruction method avoids traditional methods,such as bubble sorting and traversal searching,simplifies the design of the logic firmware,and reduces the time complexity from O(n2)to O(n).This study contributes to the advancement in measuring neutron beam flux for BNCT.
基金the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
文摘The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
基金supported by the National Key R&D Program of China(No.2022YFA1602201)。
文摘Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.
基金supported by the Scientific and Technological Research and Development Programs of China Railway Group Limited(Grant No.2022 Major Special Project-07)Gansu Provincial Technology Innovation Guidance Program-Special Funding for Capacity Building of Enterprise R&D Institutions(Grant No.23CXJA0011)Key R&D and transformation plan of Qinghai Province,China(Special Project for Transformation of Scientific and Technological Achievements No.2022-SF-158).
文摘In the actual monitoring of deep hole displacement,the identification of slip surfaces is primarily based on abrupt changes observed in the inclinometric curve.In conventional identification methods,inclinometric curves exhibiting indications of sliding can be categorized into three types:B-type,D-type,and r-type.The position of the slip surface is typically determined by identifying the depth corresponding to the point of maximum displacement mutation.However,this method is sensitive to the interval of measurement points and the observation scale of the coordinate axes and suffers from unclear sliding surfaces and uncertain values.Based on the variation characteristics of these diagonal curves,we classified the landslide into three components:the sliding body,the sliding interval,and the immobile body.Moreover,three different generalization models were established to analyze the relationships between the curve form and the slip surface location based on different physical indicators such as displacement rate,relative displacement,and acceleration.The results show that the displacement rate curves of an r-type slope exhibit a clustering feature in the sliding interval,and by solving for the depth of discrete points within the step phase,it is possible to determine the location of the slip surface.On the other hand,D-type slopes have inflection points in the relative displacement curve located at the slip surface.The acceleration curves of B-type slopes exhibit clustering characteristics during the sliding interval,while the scattered acceleration data demonstrate wandering characteristics.Consequently,the slip surface location can be revealed by solving the depth corresponding to the maximum acceleration with cubic spline interpolation.The approach proposed in this paper was applied to the monitoring data of a landslide in Yunnan Province,China.The results indicate that our approach can accurately identify the slip surface location and enable computability of its position,thereby enhancing applicability and reliability of the deep-hole displacement monitoring data.
基金supported by the National Natural Science Foundation of China (No.52204085)the Interdisciplinary Research Project for Young Teachers of USTB,Fundamental Research Funds for the Central Universities (No.FRF-IDRY-21-006).
文摘To study the effects of the initiation position on the damage and fracture characteristics of linear-charge blasting, blasting model experiments were conducted in this study using computed tomography scanning and three-dimensional reconstruction methods. The fractal damage theory was used to quantify the crack distribution and damage degree of sandstone specimens after blasting. The results showed that regardless of an inverse or top initiation, due to compression deformation and sliding frictional resistance, the plugging medium of the borehole is effective. The energy of the explosive gas near the top of the borehole is consumed. This affects the effective crushing of rocks near the top of the borehole, where the extent of damage to Sections Ⅰ and Ⅱ is less than that of Sections Ⅲ and Ⅳ. In addition, the analysis revealed that under conditions of top initiation, the reflected tensile damage of the rock at the free face of the top of the borehole and the compression deformation of the plug and friction consume more blasting energy, resulting in lower blasting energy efficiency for top initiation. As a result, the overall damage degree of the specimens in the top-initiation group was significantly smaller than that in the inverse-initiation group. Under conditions of inverse initiation, the blasting energy efficiency is greater, causing the specimen to experience greater damage. Therefore, in the engineering practice of rock tunnel cut blasting, to utilize blasting energy effectively and enhance the effects of rock fragmentation, using the inverse-initiation method is recommended. In addition, in three-dimensional(3D) rock blasting, the bottom of the borehole has obvious end effects under the conditions of inverse initiation, and the crack distribution at the bottom of the borehole is trumpet-shaped. The occurrence of an end effect in the 3D linear-charge blasting model experiment is related to the initiation position and the blocking condition.
基金The National Science and Technology Council of Taiwan(Grant No.NSTC 111-2811-E-516 A49-534)provided financial support for this study。
文摘Magneto-electro-elastic(MEE)materials are a specific class of advanced smart materials that simultaneouslymanifest the coupling behavior under electric,magnetic,and mechanical loads.This unique combination ofproperties allows MEE materials to respond to mechanical,electric,and magnetic stimuli,making them versatile forvarious applications.This paper investigates the static and time-harmonic field solutions induced by the surface loadin a three-dimensional(3D)multilayered transversally isotropic(TI)linear MEE layered solid.Green’s functionscorresponding to the applied uniform load(in both horizontal and vertical directions)are derived using the FourierBessel series(FBS)system of vector functions.By virtue of this FBS method,two sets of first-order ordinarydifferential equations(i.e.,N-type and LM-type)are obtained,with the expansion coefficients being Love numbers.It is noted that the LM-type system corresponds to the MEE-coupled P-,SV-,and Rayleigh waves,while the N-typecorresponds to the purely elastic SH-and Love waves.By applying the continuity conditions across interfaces,the solutions for each layer of the structure(from the bottom to the top)are derived using the dual-variable andposition(DVP)method.This method(i.e.,DVP)is unconditionally stable when propagating solutions throughdifferent layers.Numerical examples illustrate the impact of load types,layering,and frequency on the response ofthe structure,as well as the accuracy and convergence of the proposed approach.The numerical results are usefulin designing smart devices made of MEE solids,which are applicable to engineering fields like renewable energy.
基金financially supported by the HAAFS Science and Technology Innovation Special Project China(2022KJCXZX-LYS-9)the Natural Science Foundation of Hebei Province China(C2021301004)the Key Research and Dvelopment Program of Hebei Province China(20326401D)。
文摘Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.
基金supported by the Research Program of the National Major Research Instruments(No.11927901)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB34000000)+3 种基金the Function Development Project of Chinese Academy of Sciences(No.2022G101)National Key R&D Program of China(No.2018YFE0205200)Natural Science Foundation of China(Nos.11875301,11875302,U1867214,U1832105,U1832167)CAS"Light of West China"Program。
文摘The cooling storage ring(CSR)external-target experiment(CEE)is a spectrometer used in construction to study the properties of nuclear matter in high-baryon density regions at the Heavy-Ion Research Facility in Lanzhou(HIRFL).This study presents the design,simulation,manufacturing,and testing of a half-size prototype of a multi-wire drift chamber(MWDC)for the CEE.First,the performance of the MWDC connected to homemade electronics was simulated.The results demonstrated that an energy resolution of 18.5% for 5.9-keV X-rays and a position resolution of 194μm for protons can be achieved by the current design.Because the size of the largest MWDC reached 176 cm×314 cm,a set of 98 cm×98 cm prototypes was built using the new techniques.The positioning accuracy of the anode wires in this prototype is better than 20μm.After optimization,using commercially available electronics,the prototype can achieved an energy resolution of 19.7%for a^(55)Fe X-ray source.The CEE-MWDC detector and electronics were simultaneously tested.An energy resolution of 22%was achieved for the^(55)Fe source;the track residuals were approximately 330μm for the cosmic rays.The results demonstrate that the current design and techniques meet the requirements of the CEE-MWDC array.
基金financially supported by the Science&Technology Project of Beijing Education Committee(KM202210005013)National Natural Science Foundation of China(52306180)。
文摘This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
基金supported by the National Natural Science Foundation of China under Grant 51991384Anhui Provincial Major Science and Technology Project under Grant 202203c08020010。
文摘High frequency pulsating voltage injection method is a good candidate for detecting the initial rotor position of permanent magnet synchronous motor.However,traditional methods require a large number of filters,which leads to the deterioration of system stability and dynamic performance.In order to solve these problems,a new signal demodulation method is proposed in this paper.The proposed new method can directly obtain the amplitude of high-frequency current,thus eliminating the use of filters,improving system stability and dynamic performance and saving the work of adjusting filter parameters.In addition,a new magnetic polarity detection method is proposed,which is robust to current measurement noise.Finally,experiments verify the effectiveness of the method.
基金The National Key R&D Program of China under contract No.2019YFA0606702the National Natural Science Foundation of China under contract Nos 42176222,91858202,41630963,and 41776003+1 种基金the National Science Foundation under contract No.NSF-IIS-2123264the fund suported by the National Aeronautics and Space Administration under contract No.NASA-80NSSC20M0220.
文摘The Agulhas system is the strongest western boundary current system in the Southern Hemisphere and plays an important role in modulating the Indian-to-Atlantic Ocean water exchange by the Agulhas leakage.It is difficult to measure in situ transport of the Agulhas leakage as well as the Agulhas retroflection position due to their intermittent nature.In this study,an innovative kinematic algorithm was designed and applied to the gridded altimeter observational data,to ascertain the longitudinal position of Agulhas retroflection,the stability of Agulhas jet stream,as well as its strength.The results show that the east-west shift of retroflection is related neither to the strength of Agulhas current nor to its stability.Further analysis uncovers the connection between the westward extension of Agulhas jet stream and an anomalous cyclonic circulation at its northern side,which is likely attributed to the local wind stress curl anomaly.To confirm the effect of local wind forcing on the east-west shift of retroflection,numerical sensitivity experiments were conducted.The results show that the local wind stress can induce a similar longitudinal shift of the retroflection as altimetry observations.Further statistical and case study indicates that whether an Agulhas ring can continuously migrate westward to the Atlantic Ocean or re-merge into the main flow depends on the retroflection position.Therefore,the westward retroflection may contribute to a stronger Agulhas leakage than the eastward retroflection.
文摘Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting.
基金supported in part by the National Natural Science Foundation of China(61901231)in part by the National Natural Science Foundation of China(61971238)+3 种基金in part by the Natural Science Foundation of Jiangsu Province of China(BK20180757)in part by the open project of the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space,Ministry of Industry and Information Technology(KF20202102)in part by the China Postdoctoral Science Foundation under Grant(2020M671480)in part by the Jiangsu Planned Projects for Postdoctoral Research Funds(2020z295).
文摘In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means.
基金supported in part by the National Natural Science Foundation of China under Grant 52105079 and 62103455。
文摘This paper proposes a virtual position-offset injection based permanent magnet temperature estimation approach for permanent magnet synchronous machines(PMSMs). The concept of virtual position-offset injection is mathematically transforming the machine model to a virtual frame with a position-offset. The virtual frame temperature estimation model is derived to calculate the permanent magnet temperature(PMT) directly from the measurements with computation efficiency. The estimation model involves a combined inductance term, which can simplify the establishment of saturation compensation model with less measurements. Moreover, resistance and inverter distorted terms are cancelled in the estimation model, which can improve the robustness to the winding temperature rise and inverter distortion. The proposed approach can achieve simplified computation in temperature estimation and reduced memory usage in saturation compensation. While existing model-based approaches could be affected by either the need of resistance and inverter information or complex saturation compensation. Experiments are conducted on the test machine to verify the proposed approach under various operating conditions.