A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical m...A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.展开更多
This paper explores some effective tactics on the teaching of English. It starts with the introduction of the importance of learning English, then it reveals the qualities and useful strategies that a teacher of Engli...This paper explores some effective tactics on the teaching of English. It starts with the introduction of the importance of learning English, then it reveals the qualities and useful strategies that a teacher of English should master if he or she wants to make his or her lessons successful. It also conducts the analysis of how these tactics interact in the classroom teaching. The paper concludes that examining effective ways of teaching is useful in helping teachers either in their academic field or in their professional development.展开更多
Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are no...Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are not balanced in search.A hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm(NL-BGWOA)is proposed to solve the problem in this paper.In the proposed method,a new position updating strategy combining the position changes of whales and grasshoppers population is expressed,which optimizes the diversity of searching in the target domain.Ten distinct high-dimensional UCI datasets,the multi-modal Parkinson's speech datasets,and the COVID-19 symptom dataset are used to validate the proposed method.It has been demonstrated that the proposed NL-BGWOA performs well across most of high-dimensional datasets,which shows a high accuracy rate of up to 0.9895.Furthermore,the experimental results on the medical datasets also demonstrate the advantages of the proposed method in actual FS problem,including accuracy,size of feature subsets,and fitness with best values of 0.913,5.7,and 0.0873,respectively.The results reveal that the proposed NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data.展开更多
文摘A new hydraulic actuator-hydraulic muscle (HM) is described, and the actuator's features and applications are analyzed, then a position servocontrol system in which HM is main actuator is set up. The mathematical model of the system is built up and several control strategies are discussed. Based on the mathematical model, simulation research and experimental investigation with subsection PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control adopted respectively are carried out, and the results indicate that compared with PID control, neural network self-adaptive PID control and single neuron self-adaptive PID control don't need controlled system's accurate model and have fast response, high control accuracy and strong robustness, they are very suitable for HM position servo control system.
文摘This paper explores some effective tactics on the teaching of English. It starts with the introduction of the importance of learning English, then it reveals the qualities and useful strategies that a teacher of English should master if he or she wants to make his or her lessons successful. It also conducts the analysis of how these tactics interact in the classroom teaching. The paper concludes that examining effective ways of teaching is useful in helping teachers either in their academic field or in their professional development.
基金supported by Natural Science Foundation of Liaoning Province under Grant 2021-MS-272Educational Committee project of Liaoning Province under Grant LJKQZ2021088.
文摘Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are not balanced in search.A hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm(NL-BGWOA)is proposed to solve the problem in this paper.In the proposed method,a new position updating strategy combining the position changes of whales and grasshoppers population is expressed,which optimizes the diversity of searching in the target domain.Ten distinct high-dimensional UCI datasets,the multi-modal Parkinson's speech datasets,and the COVID-19 symptom dataset are used to validate the proposed method.It has been demonstrated that the proposed NL-BGWOA performs well across most of high-dimensional datasets,which shows a high accuracy rate of up to 0.9895.Furthermore,the experimental results on the medical datasets also demonstrate the advantages of the proposed method in actual FS problem,including accuracy,size of feature subsets,and fitness with best values of 0.913,5.7,and 0.0873,respectively.The results reveal that the proposed NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data.