Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ...Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.展开更多
Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on...Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.展开更多
Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a ...Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.展开更多
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ...There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.展开更多
This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-freque...This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.展开更多
This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate th...This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform...An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.展开更多
A compensation implementation scheme of the advanced targeting process based on the fine tracking system is proposed in this paper.Based on the working process of the quantum positioning system(QPS)and its acquisition...A compensation implementation scheme of the advanced targeting process based on the fine tracking system is proposed in this paper.Based on the working process of the quantum positioning system(QPS)and its acquisition,tracking and pointing(ATP)system,the advanced targeting subsystem of the ATP system is designed.Based on six orbital parameters of the quantum satellite Mozi,the advanced targeting azimuth angle and pitch angle are transformed into the dynamic tracking center of the fine tracking system in the ATP system.The deviation of the advanced targeting process is analyzed.In the Simulink,the simulation experiment of the ATP system considering the deviation compensation of the advanced targeting is carried out,and the results are analyzed.展开更多
China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China An...China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China Annual Meeting of Satellite Navigation and Location Services in Shenzhen on September 16 and the First Satellite Application International Exposition held.展开更多
A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pres...A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.展开更多
The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts whic...The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation.展开更多
To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy w...To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy which is very important in landing position, and then we derived the SA error by eliminating almost all other errors including ionospheric and tropospheric timedelays and clock errors both in satellites and in receiver, etc. By means of the system identificationtheory, an SA errorl all SA error model with the second-order Gauss-Maukov stochastic process wasderived and simulated. With the selected parameters of the stochastic process) the simulation resultsshow that there is the excellent agreement between the simulated SA error model and that of reallyapplied in GPS system.展开更多
To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) ,...To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.展开更多
Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller...Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.展开更多
A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic techn...A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.展开更多
The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication sys...The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.展开更多
To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between...To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.展开更多
The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmissi...The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.展开更多
It is very important to locate batteries accurately and quickly during automatic battery production.Unstable or inaccurate location will negatively influence battery's consistency, quality and finished product rat...It is very important to locate batteries accurately and quickly during automatic battery production.Unstable or inaccurate location will negatively influence battery's consistency, quality and finished product rate.A traditional way is using sensor to detect and locate batteries directly , but because of the detecting tolerance, setting them on a fixed point exactly is almost impossible.This problem could be completely solved by the application of mint drive automatic accurate servo locating system.Firstly operating software WorkBench test was applied to collocate the servo locating driver for a most optimized control.Then based on the requirement of real location, program and test the locating action with a programming software and finally upload all the locating information to MicroLogix 1200 PLC, the PLC will control the running on each station telling when to locate, where is the location and how to eliminate bad parts.For this intelligent servo locating system has the advantages of powerful function, simple operation, high controlling and locating accuracy and easy maintenance, it is very suitable to be adopted by automatic battery making line.It is regarded as a very advanced method of control currently for reducing waste material due to inaccurate location and tough adjustment.展开更多
基金supported by the National Natural Science Foundation of China under(Grant No.52175531)in part by the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant(Grant Nos.KJQN202000605 and KJZD-M202000602)。
文摘Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios.
文摘Fire rescue challenges and solutions have evolved from straightfor-ward plane rescue to encompass 3D space due to the rise of high-rise city buildings.Hence,this study facilitates a system with quick and simplified on-site launching and generates real-time location data,enabling fire rescuers to arrive at the intended spot faster and correctly for effective and precise rescue.Auto-positioning with step-by-step instructions is proposed when launching the locating system,while no extra measuring instrument like Total Station(TS)is needed.Real-time location tracking is provided via a 3D space real-time locating system(RTLS)constructed using Ultra-wide Bandwidth technology(UWB),which requires electromagnetic waves to pass through concrete walls.A hybrid weighted least squares with a time difference of arrival(WLS/TDOA)positioning method is proposed to address real path-tracking issues in 3D space and to meet RTLS requirements for quick computing in real-world applications.The 3D WLS/TDOA algorithm is theoretically constructed with the Cramer-Rao lower bound(CRLB).The computing complexity is reduced to the lower bound for embedded hardware to directly compute the time differential of the arriving signals using the time-to-digital converter(TDC).The results of the experiments show that the errors are controlled when the positioning algorithm is applied in various complicated situations to fulfill the requirements of engineering applications.The statistical analysis of the data reveals that the proposed UWB RTLS auto-positioning system can track target tags with an accuracy of 0.20 m.
文摘Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.
基金supported by the NIBIB and the NEI of the National Institutes of Health(R01EB018117)。
文摘There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.
基金Supported by the Basic Research Foundation of Central University(HEUCFZ1003)
文摘This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.
基金This work was supported by Natural Science Foundation of Hainan Province of China(No.117212)National Natural Science Foundation of China(Nos.61633008,61374007,61601262 and 61701487)Natural Science Foundation of Heilongjiang Province of China(No.F2017005)and China Scholarship Council.
文摘This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
基金The National Natural Science Foundation of China(No.61741102,61471164,61601122)the Fundamental Research Funds for the Central Universities(No.SJLX_160040)
文摘An indoor positioning system( IPS) is designed to realize positioning and tracking of mobile targets,by taking advantages of both the visible light communication( VLC) and inertial measurement unit( IMU). The platform of the IPS is designed,which consists of the light-emitting diode( LED)based transmitter,the receiver and the positioning server. To reduce the impact caused by measurement errors,both inertial sensing data and the received signal strength( RSS) from the VLC are calibrated. Then,a practical propagation model is established to obtain the distance between the transmitter and the receiver from the RSS measurements. Furthermore,a hybrid positioning algorithm is proposed by using the adaptive Kalman filter( AKF) and the weighted least squares( WLS)trilateration to estimate the positions of the mobile targets.Experimental results show that the developed IPS using the proposed hybrid positioning algorithm can extend the localization area of VLC,mitigate the IMU drifts and improve the positioning accuracy of mobile targets.
基金supported by the National Natural Science Foundation of China(61973290).
文摘A compensation implementation scheme of the advanced targeting process based on the fine tracking system is proposed in this paper.Based on the working process of the quantum positioning system(QPS)and its acquisition,tracking and pointing(ATP)system,the advanced targeting subsystem of the ATP system is designed.Based on six orbital parameters of the quantum satellite Mozi,the advanced targeting azimuth angle and pitch angle are transformed into the dynamic tracking center of the fine tracking system in the ATP system.The deviation of the advanced targeting process is analyzed.In the Simulink,the simulation experiment of the ATP system considering the deviation compensation of the advanced targeting is carried out,and the results are analyzed.
文摘China’s Bei Dou-3 global positioning system has been officially initiated construction with four global networking satel ites to be launched by the end of this year,according to the announcement at the Sixth China Annual Meeting of Satellite Navigation and Location Services in Shenzhen on September 16 and the First Satellite Application International Exposition held.
基金Supported by the National Natural Science Foundation of China(61001109)the Pilot Program for the New and Interdisciplinary Subjects of the Chinese Academy of Sciences(KJCX2-EWJ01)the Knowledge Innovation Program of the Chinese Academy of Sciences(KGCX2-EW-4071)
文摘A differential barometric altimetry technology based on the digital pressure sensors is put forward by using the existing mobile phone base station as reference. The height of known base sta- tion is precise. The pressure and temperature of the known base station is measured by sensors and transmitted to users. The absolute height value of user will be calculated by combining the baromet- ric pressure values and temperature values from the base station with the locally measured values. In order to decrease system errors caused by inconsistency between the measured pressure value at base station and the locally measured pressure value, weights correction is applied based on multiple reference stations. The calculated height value is accurate due to eliminating the measured errors caused by irregular changes of atmospheric pressure, with the error less than 1 m. Resolution of ele- vation positioning depends upon the resolution of the pressure sensor, the relationship between which is approximately linear. When the resolution of sensor is 0.01 hPa, the resolution of elevation positioning is about 0. 1 m. In addition, the data frame format at base station is designed in this arti- cle. Experimental results show that the method is accurate, reliable, stable and has the ability to distinguish floors and stair steps.
基金This work was supported in pert by NIST Contract No. 40RANB9B8112.
文摘The Global Positioning System (GPS) uses accurate atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional frequency shifts which are so large that, without properly accounting for relativistic effects, the system would not work. As a practical matter, therefore, many individuals who use the GPS need to understand how relativistic effects accounted for in the system. This paper discusses relativistic effects arising from both special relativity and general relativity, and how these effects are incorporated in GPS operations. Two introductory sections on kinematics in special and general relativity, respectively, are followed by a section which describes how relativistic effects should be accounted for. The concept of synchroization in the Earth-Centered Inertial frame is discussed in detail. Numerical and experimental examples are given, showing the sizes of the various effects. The treatment of special and general relativity is sufficiently complete that a person should be able to follow the development without much reference to external material, except that a few standard results have been quoted from textbooks without derivation.
文摘To degrade location accuracy for unauthorized GPS users, US government applied Selective Availability (SA) to Global Positioning System (GPS). In this paper we discuss an anti-SAapproach to improve location accuracy which is very important in landing position, and then we derived the SA error by eliminating almost all other errors including ionospheric and tropospheric timedelays and clock errors both in satellites and in receiver, etc. By means of the system identificationtheory, an SA errorl all SA error model with the second-order Gauss-Maukov stochastic process wasderived and simulated. With the selected parameters of the stochastic process) the simulation resultsshow that there is the excellent agreement between the simulated SA error model and that of reallyapplied in GPS system.
基金National Natural Science Foundation of China(No.61663020)Project of Education Department of Gansu Province(No.2016B-036)
文摘To solve low precision and poor stability of the extended Kalman filter (EKF) in the vehicle integrated positioning system owing to acceleration, deceleration and turning (hereinafter referred to as maneuvering) , the paper presents an adaptive filter algorithm that combines interacting multiple model (IMM) and non linear Kalman filter. The algorithm describes the motion mode of vehicle by using three state spacemode]s. At first, the parallel filter of each model is realized by using multiple nonlinear filters. Then the weight integration of filtering result is carried out by using the model matching likelihood function so as to get the system positioning information. The method has advantages of nonlinear system filter and overcomes disadvantages of single model of filtering algorithm that has poor effects on positioning the maneuvering target. At last, the paper uses IMM and EKF methods to simulate the global positioning system (OPS)/inertial navigation system (INS)/dead reckoning (DR) integrated positioning system, respectively. The results indicate that the IMM algorithm is obviously superior to EKF filter used in the integrated positioning system at present. Moreover, it can greatly enhance the stability and positioning precision of integrated positioning system.
文摘Considering the need of target positioning,a remote positioning system is designed based on global positioning system(GPS)and general packet radio service(GPRS);The data collection terminal is based on microcontroller unit(MCU)PIC24FV301.It uses GPRS network to create wireless link and transmits GPS source information which is collected by LEA-5H board to monitor center on the Internet.The monitor center obtains the target information through processing and analysis of the calculated data.Actual operation results indicate that the designed system has excellent performance and achieves the goal of the remote location.
基金supported by the ‘‘Strategic Priority Research Program’’ of the Chinese Academy of Sciences(No.XDA10010800)the ‘‘Fundamental Research Funds for the Central Universities’’(No.3102017zy010)
文摘A thorough detector response calibration using radioactive sources is necessary for the Jiangmen Underground Neutrino Observatory. Herein, we discuss the design of a source positioning system based on ultrasonic technology, aiming for a 3-cm precision over the entire35-m diameter detector sphere. A prototype system is constructed and demonstrated for the experiment.
文摘The research on positioning system and spatial alignment is a big topic. In this paper, we proposed a design (that) studies two issues. One is the study of range positioning algorithm based on ZigBee communication system. The other one is spatial alignment platform which is controlled with two servos. Hardware and software control system was realized, which also consists of two parts, ZigBee network positioning system and automatic orientation platform.
基金National Key Research and Development Program of China,No.2018YFC0604404.
文摘To tackle challenges such as interference and poor accuracy of indoor positioning systems,a novel scheme based on ultra-wide bandwidth(UWB)technology is proposed.First,we illustrate a distance measuring method between two UWB devices.Then,a Taylor series expansion algorithm is developed to detect coordinates of the mobile node using the location of anchor nodes and the distance between them.Simulation results show that the observation error under our strategy is within 15 cm,which is superior to existing algorithms.The final experimental data in the hardware system mainly composed of STM32 and DW1000 also confirms the performance of the proposed scheme.
基金Supported by the National Natural Science Foundation of China(No.61771186)Outstanding Youth Project of Heilongjiang Natural Science Foundation(No.YQ2020F012)Undergraduate University Project of Young Scientist Creative Talent of Heilongjiang Province(No.UNPYSCT-2017125)。
文摘The mobility of the targets asks for high requirements of the locating speed in indoor positioning systems.The standard medium access control(MAC)algorithm will often cause lots of packet conflicts and high transmission delay if multiple users communicate with one beacon at the same time,which will severely limit the speed of the system.Therefore,an optimized MAC algorithm is proposed based on channel reservation to enable users to reserve beacons.A frame threshold is set to ensure the users with shorter data frames do not depend on the reservation mechanism,and multiple users can achieve packets switching with relative beacon in a fixed sequence by using frequency division multiplexing technology.The simulation results show that the optimized MAC algorithm proposed in this paper can improve the positioning speed significantly while maintaining the positioning accuracy.Moreover,the positioning accuracy can be increased to a certain extent if more channel resources can be obtained,so as to provide effective technical support for the location and tracking applications of indoor moving targets.
文摘It is very important to locate batteries accurately and quickly during automatic battery production.Unstable or inaccurate location will negatively influence battery's consistency, quality and finished product rate.A traditional way is using sensor to detect and locate batteries directly , but because of the detecting tolerance, setting them on a fixed point exactly is almost impossible.This problem could be completely solved by the application of mint drive automatic accurate servo locating system.Firstly operating software WorkBench test was applied to collocate the servo locating driver for a most optimized control.Then based on the requirement of real location, program and test the locating action with a programming software and finally upload all the locating information to MicroLogix 1200 PLC, the PLC will control the running on each station telling when to locate, where is the location and how to eliminate bad parts.For this intelligent servo locating system has the advantages of powerful function, simple operation, high controlling and locating accuracy and easy maintenance, it is very suitable to be adopted by automatic battery making line.It is regarded as a very advanced method of control currently for reducing waste material due to inaccurate location and tough adjustment.