Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with spa...Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with sparse Hessian structures.In exchange of the relaxation of the secant equation,the MCQN update avoids solving difficult subproblems and overcomes the ill-conditioning of approximate Hessian matrices.However,local and superlinear convergence results were only established for the MCQN update with the DFP method.In this paper,we extend the convergence result to the MCQN update with the whole Broyden’s convex family.Numerical results are also reported,which suggest some efficient ways of choosing the parameter in the MCQN update the Broyden’s family.展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
Recently,some authors(Shen and Shi,2016)studied the generalized shiftsplitting(GSS)iteration method for singular saddle point problem with nonsymmetric positive definite(1,1)-block and symmetric positive semidefinite(...Recently,some authors(Shen and Shi,2016)studied the generalized shiftsplitting(GSS)iteration method for singular saddle point problem with nonsymmetric positive definite(1,1)-block and symmetric positive semidefinite(2,2)-block.In this paper,we further apply the GSS iteration method to solve singular saddle point problem with nonsymmetric positive semidefinite(1,1)-block and symmetric positive semidefinite(2,2)-block,prove the semi-convergence of the GSS iteration method and analyze the spectral properties of the corresponding preconditioned matrix.Numerical experiment is given to indicate that the GSS iteration method with appropriate iteration parameters is effective and competitive for practical use.展开更多
A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the...A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.展开更多
We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation...We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation methods for the system of linear equations with positive definite matrix.展开更多
In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in...In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in the references are corrected.展开更多
From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of t...From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.展开更多
A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Ha...A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Hadamard product of two quasi positive definite matrices, and Schur's achievements in Hadamard product of the positive definite matrix is generalized to quasi positive definite matrix theory.展开更多
A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The conv...A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.展开更多
A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we cons...A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we consider the solution of saddle point systems by preconditioned Krylov subspaee method and discuss some spectral properties of the preconditioned saddle point matrices. Numerical experiments are given to validate the performances of the preconditioners.展开更多
Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic ...Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic boundary value problem; Discussion on symmetric positive definite matrix; Computational complexities.展开更多
基金This work was supported by the Chinese NSF Grants(Nos.11331012 and 81173633)the China National Funds for Distinguished Young Scientists(No.11125107)+1 种基金the CAS Program for Cross&Coorperative Team of the Science&Technology InnovationThe authors are grateful to Professors Masao Fukushima and Ya-xiang Yuan for their warm encouragement and valuable suggestions.They also thank the two anonymous referees very much for their useful comments on an early version of this paper.
文摘Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with sparse Hessian structures.In exchange of the relaxation of the secant equation,the MCQN update avoids solving difficult subproblems and overcomes the ill-conditioning of approximate Hessian matrices.However,local and superlinear convergence results were only established for the MCQN update with the DFP method.In this paper,we extend the convergence result to the MCQN update with the whole Broyden’s convex family.Numerical results are also reported,which suggest some efficient ways of choosing the parameter in the MCQN update the Broyden’s family.
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.
基金Supported by Guangxi Science and Technology Department Specific Research Project of Guangxi for Research Bases and Talents(Grant No.GHIKE-AD23023001)Natural Science Foundation of Guangxi Minzu University(Grant No.2021KJQD01)Xiangsi Lake Young Scholars Innovation Team of Guangxi University for Nationalities(Grant No.2021RSCXSHQN05)。
文摘Recently,some authors(Shen and Shi,2016)studied the generalized shiftsplitting(GSS)iteration method for singular saddle point problem with nonsymmetric positive definite(1,1)-block and symmetric positive semidefinite(2,2)-block.In this paper,we further apply the GSS iteration method to solve singular saddle point problem with nonsymmetric positive semidefinite(1,1)-block and symmetric positive semidefinite(2,2)-block,prove the semi-convergence of the GSS iteration method and analyze the spectral properties of the corresponding preconditioned matrix.Numerical experiment is given to indicate that the GSS iteration method with appropriate iteration parameters is effective and competitive for practical use.
基金Research supported by The China NNSF 0utstanding Young Scientist Foundation (No.10525102), The National Natural Science Foundation (No.10471146), and The National Basic Research Program (No.2005CB321702), P.R. China.
文摘A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.
文摘We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation methods for the system of linear equations with positive definite matrix.
文摘In the paper,a necessary and sufficeent condition for generalized diagonal domiance matrices is given.Further, the relations among all generalized positive definite matrices are shown, also,some flaws and mistakes in the references are corrected.
文摘From the formulas of the conjugate gradient, a similarity between a symmetric positive definite (SPD) matrix A and a tridiagonal matrix B is obtained. The elements of the matrix B are determined by the parameters of the conjugate gradient. The computation of eigenvalues of A is then reduced to the case of the tridiagonal matrix B. The approximation of extreme eigenvalues of A can be obtained as a 'by-product' in the computation of the conjugate gradient if a computational cost of O(s) arithmetic operations is added, where s is the number of iterations This computational cost is negligible compared with the conjugate gradient. If the matrix A is not SPD, the approximation of the condition number of A can be obtained from the computation of the conjugate gradient on AT A. Numerical results show that this is a convenient and highly efficient method for computing extreme eigenvalues and the condition number of nonsingular matrices.
文摘A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Hadamard product of two quasi positive definite matrices, and Schur's achievements in Hadamard product of the positive definite matrix is generalized to quasi positive definite matrix theory.
基金Subsidized by The Special Funds For Major State Basic Research Projects G1999032803.
文摘A class of regularized conjugate gradient methods is presented for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned symmetric positive definite matrix. The convergence properties of these methods are discussed in depth, and the best possible choices of the parameters involved in the new methods are investigated in detail. Numerical computations show that the new methods are more efficient and robust than both classical relaxation methods and classical conjugate direction methods.
文摘A new HSS-like iterative method is first proposed based on HSS-like splitting of non- Hermitian (1,1) block for solving saddle point problems. The convergence analysis for the new method is given. Meanwhile, we consider the solution of saddle point systems by preconditioned Krylov subspaee method and discuss some spectral properties of the preconditioned saddle point matrices. Numerical experiments are given to validate the performances of the preconditioners.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032803 and Suported bythe National Natural Scienc
文摘Presents preconditioning matrices having parallel computing function for the coefficient matrix and a class of parallel hybrid algebraic multilevel iteration methods for solving linear equations. Solution to elliptic boundary value problem; Discussion on symmetric positive definite matrix; Computational complexities.