Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the ci...Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.展开更多
This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwa...This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.展开更多
Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is...Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.展开更多
By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f...By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.展开更多
Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experiment...Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.展开更多
Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually i...Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually invoked one or more of the sources of proprioceptive signals (e.g. muscle spindle and Golgi tendon organ afferents) in positive or negative feed-back loops to the homonymous alpha motoneurones. In this paper we consider to analyze the role of posi-tive feedback in combination of negative feedback due to important role of them in stabilizing the neu-romuscular system.展开更多
Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive ...Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.展开更多
Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t...Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.展开更多
针对自适应正位置反馈(Adaptive Positive Position Feedback,APPF)控制器在控制效果与分数阶正位置反馈(Fractional Order Positive Position Feedback,FOPPF)控制器在针对摄动区间小的不足,提出一种分数阶APPF(Fractional Order Adapt...针对自适应正位置反馈(Adaptive Positive Position Feedback,APPF)控制器在控制效果与分数阶正位置反馈(Fractional Order Positive Position Feedback,FOPPF)控制器在针对摄动区间小的不足,提出一种分数阶APPF(Fractional Order Adaptive Positive Position Feedback,FOAPPF)控制器,使得控制器在控制效果提升的同时兼具强鲁棒性。基于不同参数对FOPPF控制器的影响,推导参数的最佳范围,将系统多个摄动模型的正弦扫频响应进行综合加权处理,并考虑系统远离共振频段的控制性能,构建附带约束条件的控制设计的目标函数。以粘有宏纤维复合材料(Macro Fiber Composites,MFC)的垂尾模型及其摄动模型为被控对象,设计相应的FOAPPF控制器。研究结果表明:相比FOPPF控制器,FOAPPF控制器闭环极点对参数摄动不敏感;相比APPF控制器,FOAPPF控制器的相频曲线在摄动频带内变化平缓,其控制效果受固有频率在线估计误差的影响更小;多种试验工况表明,FOAPPF控制器在不同摄动模型下均具有较好的控制效果,垂尾抖振响应均方根值至少降低了55%,且具有较好的鲁棒性,因此该控制器对垂尾结构的振动主动控制具有良好应用潜力。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.82073276 and 82273100)Science and Technology Project of Tianjin Binhai New Area Health Commission(Grant No.2022BWKY016)the China Digestive Tumor Clinical Scientific Research Public Welfare Project(Grant No.P014-058).
文摘Objective:Colorectal cancer(CRC)is a prevalent malignant tumor with a high fatality rate.CircPDIA4 has been shown to have a vital role in cancer development by acting as a facilitator.Nevertheless,the impact of the circPDIA4/miR-9-5p/SP1 axis on development of CRC has not been studied.Methods:Western blot,immunohistochemistry,and reverse transcription-quantitative polymerase chain reaction assays were used to analyze gene expression.The CCK-8 assay was used to assess cell growth.The Transwell assay was used to detect invasion and migration of cells.The luciferase reporter and RNA immunoprecipitation tests were used to determine if miR-9-5p and circPDIA4(or SP1)bind to one another.An in vivo assay was used to measure tumor growth.Results:It was shown that circPDIA4 expression was greater in CRC cell lines and tissues than healthy cell lines and tissues.CircPDIA4 knockdown prevented the invasion,migration,and proliferation of cells in CRC.Additionally,the combination of circPDIA4 and miR-9-5p was confirmed,as well as miR-9-5p binding to SP1.Rescue experiments also showed that the circPDIA4/miR-9-5p/SP1 axis accelerated the development of CRC.In addition,SP1 combined with the promoter region of circPDIA4 and induced circPDIA4 transcription.CircPDIA4 was shown to facilitate tumor growth in an in vivo assay.Conclusions:The circPDIA4/miR-9-5p/SP1 feedback loop was shown to aggravate CRC progression.This finding suggests that the ceRNA axis may be a promising biomarker for CRC patient treatment.
文摘This article introduces an underwater robot inspection anomaly localization feedback system comprising a real-time water surface tracking,detection,and positioning system located on the water surface,while the underwater robot inspection anomaly feedback system is housed within the underwater robot.The system facilitates the issuance of corresponding mechanical responses based on the water surface’s real-time tracking,detection,and positioning,enabling recognition and feedback of anomaly information.Through sonar technology,the underwater robot inspection anomaly feedback system monitors the underwater robot in real-time,triggering responsive actions upon encountering anomalies.The real-time tracking,detection,and positioning system from the water surface identifies abnormal conditions of underwater robots based on changes in sonar images,subsequently notifying personnel for necessary intervention.
基金The project supported by Education Department of Jiangsu Province of China under Grant No. 06KJD140111
文摘Numerical analysis of weak optical positive feedback (OPF) controlling chaos is studied in a semiconductor laser. The physical model of controlling chaos produced via modulating the current of semiconductor laser is presented under the condition of OPF. We find the physical mechanism that the nonlinear gain coefficient and linewidth enhance- ment factor of the laser are affected by OPF so that the dynamical behaviour of the system can be efficiently controlled. Chaos is controlled into a single-periodic state, a dual-periodic state, a tri-periodic state, a quadr-periodic state, a pentaperiodic state, and the laser emitting powers are increased by OPF in simulations. Lastly, another chaos-control method with modulating the amplitude of the feedback light is presented and numerically simulated to control chaotic laser into multi-periodic states.
基金Supported by the National Natural Sciences Foundation of China(10361006)Supported by the Natural Sciences Foundation of Yunnan Province(2003A0001M)Supported by the Jiangsu "Qing-lanProject" for Excellent Young Teachers in University(2006)
文摘By using a fixed point theorem on a cone to investigate the existence of two positive periodic solutions for the following delay difference system with feedback control argument of the form {△x(n)=-b(n)x(n)+f(n,x(n-τ1(n)),…,x(n-τm(n)),u(n-δ(n))),△u(n)=-η(n)u(n)+a(n)x(n-σ(n)),n∈Z.
基金supported by the Key Project (11132001)the General Projects of the National Natural Science Foundation of China (11072146, 11002087)
文摘Recently, some researches indicate that positive feedback can benefit the control if appropriate time delay is intentionally introduced into control system. However, most work is theoretical one but few are experimental. This paper presents theoretical and experimental studies of delayed positive feedback control technique using a flexible beam as research object. The positive feedback weighting coefficient is designed by using the optimal control method. The available time delay is determined by analyzing the maximal real part of characteristic roots of the system. A DSP-based experiment system is introduced. Simulation and experimental results indicate that the delayed positive feedback control may effectively reduce the beam vibration if time delay is appropriately selected.
文摘Over the past three decades, neurophysiologists studying the neural circuitry responsible for control of skeletal muscles have developed several different general theories of sensorimotor control. These have usually invoked one or more of the sources of proprioceptive signals (e.g. muscle spindle and Golgi tendon organ afferents) in positive or negative feed-back loops to the homonymous alpha motoneurones. In this paper we consider to analyze the role of posi-tive feedback in combination of negative feedback due to important role of them in stabilizing the neu-romuscular system.
基金the Natural Science Foundation of Jiangsu Province,China(Grant No.20KJB470030).
文摘Synchronization is a process that describes the coherent dynamics of a large ensemble of interacting units.The study of explosive synchronization transition attracts considerable attention.Here,I report the explosive transition within the framework of a mobile network,while each oscillator is controlled by global-order parameters of the system.Using numerical simulation,I find that the explosive synchronization(ES)transition behavior can be controlled by simply adjusting the fraction of controlled oscillators.The influences of some parameters on explosive synchronization are studied.Moreover,due to the presence of the positive feedback mechanism,I prevent the occurrence of the synchronization of continuous-phase transition and make phase transition of the system a first-order phase transition accompanied by a hysteresis loop.
基金The start-up funds of Wilfrid Laurier University of Canada, the NNSF (10071016) of Chinathe Doctor Program Foundation (20010532002) of Chinese Ministry of Education the Key Project of Chinese Ministry of Education ([2002]78) and the
文摘Under some minor technical hypotheses, for each T larger than a certain rS > 0, Krisztin, Walther and Wu showed the existence of a periodic orbit for the positive feedback delay differential equation x(t) = -rμx(t) + rf(x(t-1)), where r and μ are positive constants and f : R → R satisfies f(0) = 0 and f' > 0. Combining this with a unique result of Krisztin and Walther, we know that this periodic orbit is the one branched out from 0 through Hopf bifurcation. Using the normal form theory for delay differential equations, we show the same result under the condition that f ∈ C3(R,R) is such that f''(0) = 0 and f'''(0) < 0, which is weaker than those of Krisztin and Walther.
文摘旨在以AMPK-SIRT3正反馈环路为切入点,探讨白果内酯改善白介素1β(IL-1β)诱导的ATDC5软骨细胞炎性损伤的作用机制。采用IL-1β(10 ng·mL^(-1))诱导ATDC5软骨细胞炎性损伤来构建体外骨关节炎模型,随机分为对照组,IL-1β组,IL-1β和白果内酯共同处理组,其中,共同处理组按照白果内酯的应用浓度又分为低、中和高(15、30和60μmol·L^(-1))3个不同剂量组。免疫印迹法(Western blot)和实时荧光定量PCR(qRT-PCR)方法检测各组软骨细胞中ADAMTS4、PGC-1a、Collagen Type II、MMP-3、NRF-1和Fis1的蛋白与mRNA表达情况。试剂盒检测各组ATP含量,并通过免疫荧光方法检测SIRT3表达水平。Western blot检测AMPK-SIRT3正反馈环路相关蛋白p-AMPK、AMPK和SIRT3表达水平。使用Compound C和3-TYP处理ATDC5软骨细胞,构建AMPK-SIRT3信号通路阻断模型,检测下游PGC-1a、NRF-1和Fis1蛋白变化。结果显示,白果内酯通过下调ADAMTS4和MMP-3表达(P<0.05),促进Type II collagen表达(P<0.05)来调节ECM代谢平衡,并促进ATP合成。在机制上,白果内酯干预软骨细胞后p-AMPK、SITR3、PGC-1a和NRF-1水平显著升高(P<0.05),而Fis1蛋白水平显著降低(P<0.05),并且使用Compound C和3-TYP预处理软骨细胞后,PGC-1a、NRF-1和Fis1蛋白水平被不同程度抑制。综上所述,白果内酯通过AMPK-SIRT3正反馈环路激活PGC-1a,调节线粒体生物发生改善ATDC5软骨细胞炎性损伤。
文摘针对自适应正位置反馈(Adaptive Positive Position Feedback,APPF)控制器在控制效果与分数阶正位置反馈(Fractional Order Positive Position Feedback,FOPPF)控制器在针对摄动区间小的不足,提出一种分数阶APPF(Fractional Order Adaptive Positive Position Feedback,FOAPPF)控制器,使得控制器在控制效果提升的同时兼具强鲁棒性。基于不同参数对FOPPF控制器的影响,推导参数的最佳范围,将系统多个摄动模型的正弦扫频响应进行综合加权处理,并考虑系统远离共振频段的控制性能,构建附带约束条件的控制设计的目标函数。以粘有宏纤维复合材料(Macro Fiber Composites,MFC)的垂尾模型及其摄动模型为被控对象,设计相应的FOAPPF控制器。研究结果表明:相比FOPPF控制器,FOAPPF控制器闭环极点对参数摄动不敏感;相比APPF控制器,FOAPPF控制器的相频曲线在摄动频带内变化平缓,其控制效果受固有频率在线估计误差的影响更小;多种试验工况表明,FOAPPF控制器在不同摄动模型下均具有较好的控制效果,垂尾抖振响应均方根值至少降低了55%,且具有较好的鲁棒性,因此该控制器对垂尾结构的振动主动控制具有良好应用潜力。