During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and...During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.展开更多
With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid ...With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid metallurgy route was investigated for its stress--strain behaviour at different strain rates ranging from 700 s^-1 to 1950 s^-1. The numerical model of split Hopkinson pressure bar (SHPB) was simulated using commercially available finite element code Abaqus/Explicit. Validation of numerical simulation was carried out using available experimental and numerical results. Full scale stress--strain curves wez'e developed for various strain rates to study the effect of strain rate on compressive strength and energy absorption. The results showed that the closed cell aluminium fly ash foam is sensitive to strain rate.展开更多
An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests...An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests under tension. The effects of grain size as well as twin density on the strength and strain rate sensitivity were discussed.展开更多
Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to det...Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to determine the strain hardening exponent and the strain rate sensitivity exponent,and to construct the processing maps.Variations of the strain hardening exponent with strain were used to predict the microstructural evolutions during the hot deformation.Four variations were distinguished reflecting the different microstructural changes.Based on the analysis of the strain hardening exponent versus strain curves,the microstructural evolutions were dynamic recovery,single and multiple peak dynamic recrystallization,and interactions between dynamic recrystallization and precipitation.The strain rate sensitivity variations at an applied strain of 0.8 and strain rate of 0.1 s^(−1) were compared with the microstructural evolutions.The results demonstrate the existence of a reliable correlation between the strain rate sensitivity values and evolved microstructures.Additionally,the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at predetermined deformation conditions.The microstructural evolutions strongly correlated to the power dissipation ratio,and dynamic recrystallization occurred completely at lower power dissipation ratios.展开更多
Objectives To investigate the positive rate of different hepatitis B virus (HBV) serological markers, and the demographic factors related to HBV infection. Methods We enrolled all patients tested for HBV serologica...Objectives To investigate the positive rate of different hepatitis B virus (HBV) serological markers, and the demographic factors related to HBV infection. Methods We enrolled all patients tested for HBV serological markers, such as HBV surface antigen (HBsAg), HBV surface antibody (HBsAb), hepatitis B e antigen (HBeAg), hepatitis B e antibody (HBeAb), HBV core antibody (HBcAb), and HBV-DNA from July 2008 to July 2009 in Peking Union Medical College Hospital. The positive rate of each HBV serological marker was calculated according to gender, age, and department, respectively. The positive rates of HBV-DNA among patients with positive HBsAg were also analyzed. Results Among 27 409 samples included, 2681 (9.8%) were HBsAg positive. When patients were divided into 9 age groups, the age-specific positive rate of HBsAg was 1.2%, 9.6%, 12.3%, 10.9%, 10.3%, 9.7%, 8.0%, 5.8%, and 4.3%, respectively. The positive rate of HBsAg in non-surgical department, surgical department, and health examination center was 16.2%, 5.8%, and 4.7%, respectively. The positive rate of HBsAg of males (13.3%) was higher than that of females (7.3%, P=0.000). Among the 2681 HBsAg (+) patients, 1230 (45.9%) had HBV-DNA test, of whom 564 (45.9%) were positive. Patients with HBsAg (+), HBeAg (+), and HBcAg (+) result usually had high positive rate of HBV-DNA results (71.8%, P=0.000). Conclusions Among this group of patients in our hospital, the positive rate of HBsAg was relatively high. Age group of 20-29, males, and patients in non-surgical departments were factors associated with high positive rate of HBsAg.展开更多
The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l...The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.展开更多
Tensile deformation behaviors of the electrodeposited 40 nm grain sized Ni,25 nm Ni-1.7 wt.%Co,and 13 nm Ni-8.6 wt.%Co alloys at various strain rates and room temperature were reviewed with emphasis on strain rate sen...Tensile deformation behaviors of the electrodeposited 40 nm grain sized Ni,25 nm Ni-1.7 wt.%Co,and 13 nm Ni-8.6 wt.%Co alloys at various strain rates and room temperature were reviewed with emphasis on strain rate sensitivity and activation volume,respectively.It is found that the strain rate sensitivity and activation volume were strongly grain size dependent.An analytic model based on the bow out of a single dislocation well predicted the relationship between the strain rate sensitivity and the activation volumes for these nanocrystaline metals.展开更多
Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed th...Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.展开更多
To analyze the effect of two types of IUDs, TCu380A and GyneFix on the positive rate of Chlamydia Trahmatis (CT). Methods The TCu380A and GyneFix IUDs were compared in a randomized was for the one year and two year...To analyze the effect of two types of IUDs, TCu380A and GyneFix on the positive rate of Chlamydia Trahmatis (CT). Methods The TCu380A and GyneFix IUDs were compared in a randomized was for the one year and two year positive rate of Chlamydia Trahmatis (CT) and with the control respectively. Results The one year positive rate of CT antigens was 5.63% of TCu380A and two year was 4.92%; the one year positive rate of CT antigens was 4.62% and two year was 5.08% of GyneFix. There was no significant difference in the positive rate of CT antigen between the TCu380A IUD, and GyneFix IUDs groups, while there were significant differences between the TCu380A IUD, GyneFix IUD and the controls (15.18%) respectively. Conclusion Both IUDs provide highly effective protection against CT infection.展开更多
Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavi...Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.展开更多
In this retrospective study, a total of 275 solid masses were examined for cytopathologic diagnosis. Twenty four percent (67/275) of these cytologic samples were followed by surgical biopsy and histopathologic diagnos...In this retrospective study, a total of 275 solid masses were examined for cytopathologic diagnosis. Twenty four percent (67/275) of these cytologic samples were followed by surgical biopsy and histopathologic diagnosis, allowing for comparisons. On average, the cutaneous and subcutaneous solid masses were recognized when the dogs were aged between 6 and 9 years old. The origins of the solid masses included connective tissue tumors 37.1% (23/62), epithelial tissue tumors 33.9% (21/62), round cell tumors 19.4% (12/62), masses of inflammatory lesions 4.8% (3/62) and lesions due to other causes 4.8% (3/62). The sensitivity and positive predictive value (PPV) of cytopathology in the diagnosis of solid masses were 93% (62/67) and 97% (62/64), respectively. Generally, neo-plasms were over diagnosed by cytopathology as was indicated by the positive predictive value. Both the sensitivity and the PPV of cytopathology comparative to histopathology in the diagnosis of inflammatory processes were 100% (3/3). The inflammatory lesions were eventually confirmed as necrotizing myositis, necro-suppurative cystitis and endocrine inflammatory dermatopathy based on histopathology. Less than 8% (5/67) of samples were incorrectly diagnosed by cytology. The study showed high accuracy between cytological and histopathological examination of solid masses in dogs, and thus a reliable diagnostic tool in patient care.展开更多
The effect of quenching rate on the electrical conductivity and microstructure of thick plates of incumbent AA7050 was investigated by employing Jominy end quench test. The electrical conductivity measurement and micr...The effect of quenching rate on the electrical conductivity and microstructure of thick plates of incumbent AA7050 was investigated by employing Jominy end quench test. The electrical conductivity measurement and microstructural observation were conducted at different distances from the quenched end. The results indicate that the average cooling rates decrease with increasing the distance from the quenched end of the bar in the quench sensitive temperature range. However, the electrical conductivity increases with the increase of distance from the quenched end. The surface parts of the plate were fully recrystallized, while partial recrystallization took place at the quarter and center parts of the plate. The quench induced grain boundary precipitates became remarkably coarser and discontinuously distributed with increasing distance from the quenched end of the bar. Plenty of heterogeneous precipitates were observed to nucleate on A13Zr dispersoids when the distance from the quenched end was greater than 38mm.展开更多
The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardn...The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardness and as-quenched electro-conductivity.The microstructure transformation during isothermal treatment was studied by the transmission electron microscopy(TEM) and Avrami equation.The results showed that the electro-conductivity of the 6351 alloy increased and the hardness decreased with prolonging the holding time at a certain isothermal temperature.The TEM observation indicated that the supersaturated solid solution decomposed and needles β″ precipitated at the initial stage of isothermal holding.With the prolongation of holding time at the nose temperature,rod β' and plate β phases formed.The isothermal transformation rate at 360℃ was the fastest,and became slow at 280℃ and reached the slowest at 440℃.The nose temperatures of the TTT and TTP curves were about 360℃ and the high quench sensitive temperature range was 230 430℃.The quench factor analysis indicated that the cooling rate should be more than 15℃/s in the quench sensitive areas in order to get optimal mechanical properties.展开更多
A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorith...A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.展开更多
Despite improvements in glucose, lipids and bloodpressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need t...Despite improvements in glucose, lipids and bloodpressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need to identify additional risk factors to utilize in clinical practice or translate to novel therapies to prevent vascular complications. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes that has been linked with the development and progression of both micro- and macrovascular complications. Adolescents and adults with type 1 diabetes have reduced insulin sensitivity, even when compared to their non-diabetic counterparts of similar adiposity, serum triglycerides, high-density lipoprotein cholesterol, level of habitual physical activity, and in adolescents, pubertal stage. Reduced insulin sensitivity is thought to contribute both to the initiation and progression of macro- and microvascular complications in type 1 diabetes. There are currently clinical trials underway examining the benefits of improving insulin sensitivity with regards to vascular complications in type 1 diabetes. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes, is implicated in the pathogenesis of vascular complications and is potentially an important therapeutic target to prevent vascular complications. In this review, we will focus on the pathophysiologic contribution of insulin sensitivity to vascular complications and summarize related ongoing clinical trials.展开更多
In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model...In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.展开更多
The Fe-29 Mn-3 Al-3 Si twin-induced plasticity(TWIP)steel is used to conduct quasi-static compression and dynamic impact deformation with strain rates ranging from 8.3×10^(-4) to 3800 s^(-1).The microstructures a...The Fe-29 Mn-3 Al-3 Si twin-induced plasticity(TWIP)steel is used to conduct quasi-static compression and dynamic impact deformation with strain rates ranging from 8.3×10^(-4) to 3800 s^(-1).The microstructures and properties of deformed samples under different strain rates were investigated comparatively.These results show that positive strain rate sensitivity was observed with the increase in strain rates and that there was a significant difference in strain rate sensitivity factor(m)between quasi-static compression(m=0.029)and dynamic impact deformation(m=0.190).Compared to the quasi-static compression,the dynamic impact deformation exhibited higher yield strength.Microstructural examination reveals that the primary twins were frequently found during the quasi-static compression process,and the secondary twins were rarely observed.However,the secondary and multi-fold deformation twins were florescent in the dynamic impact samples.At the initial stage of dynamic impact deformation,partial dislocations and staking faults on multiple conjugate{111}planes were simultaneously activated and produced a large number of Lomer-Cottrell dislocations,resulting in a large increase in yield strength during dynamic impact.展开更多
The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology....The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively.展开更多
Two distinct regimes of strain rate sensitivity on yield strength are found in a high-strength nantwinned steel.The yield strength increases from 1410 to 1776 MPa when the strain rate increases from 10–3 to 1400 s-1....Two distinct regimes of strain rate sensitivity on yield strength are found in a high-strength nantwinned steel.The yield strength increases from 1410 to 1776 MPa when the strain rate increases from 10–3 to 1400 s-1.It is proposed from the measured small activation volume that the yielding of the nanotwinned steel at higher strain rates is governed by the dislocation bowing out from the carbon atmosphere.At lower strain rates,however,the yielding is controlled by the continuous re-pinning of dislocations due to the fast diffused carbon atoms,which leads to the relative insensitivity of yield strength to the strain rate.展开更多
基金supported by 111 Project (No.D21025)Open Fund Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Nos.PLN2021-01,PLN2021-02,PLN2021-03)+2 种基金High-end Foreign Expert Introduction Program (No.G2021036005L)National Key Research and Development Program (No.2021YFC2800903)National Natural Science Foundation of China (No.U20B6005-05)。
文摘During the operational process of natural gas gathering and transmission pipelines,the formation of hydrates is highly probable,leading to uncontrolled movement and aggregation of hydrates.The continuous migration and accumulation of hydrates further contribute to the obstruction of natural gas pipelines,resulting in production reduction,shutdowns,and pressure build-ups.Consequently,a cascade of risks is prone to occur.To address this issue,this study focuses on the operational process of natural gas gathering and transmission pipelines,where a comprehensive framework is established.This framework includes theoretical models for pipeline temperature distribution,pipeline pressure distribution,multiphase flow within the pipeline,hydrate blockage,and numerical solution methods.By analyzing the influence of inlet temperature,inlet pressure,and terminal pressure on hydrate formation within the pipeline,the sensitivity patterns of hydrate blockage risks are derived.The research indicates that reducing inlet pressure and terminal pressure could lead to a decreased maximum hydrate formation rate,potentially mitigating pipeline blockage during natural gas transportation.Furthermore,an increase in inlet temperature and terminal pressure,and a decrease in inlet pressure,results in a displacement of the most probable location for hydrate blockage towards the terminal station.However,it is crucial to note that operating under low-pressure conditions significantly elevates energy consumption within the gathering system,contradicting the operational goal of energy efficiency and reduction of energy consumption.Consequently,for high-pressure gathering pipelines,measures such as raising the inlet temperature or employing inhibitors,electrical heat tracing,and thermal insulation should be adopted to prevent hydrate formation during natural gas transportation.Moreover,considering abnormal conditions such as gas well production and pipeline network shutdowns,which could potentially trigger hydrate formation,the installation of methanol injection connectors remains necessary to ensure production safety.
文摘With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid metallurgy route was investigated for its stress--strain behaviour at different strain rates ranging from 700 s^-1 to 1950 s^-1. The numerical model of split Hopkinson pressure bar (SHPB) was simulated using commercially available finite element code Abaqus/Explicit. Validation of numerical simulation was carried out using available experimental and numerical results. Full scale stress--strain curves wez'e developed for various strain rates to study the effect of strain rate on compressive strength and energy absorption. The results showed that the closed cell aluminium fly ash foam is sensitive to strain rate.
基金This work was supported by the National Natural Science Foundation of China(No.50571096 50021101,50431010)the Ministry of Science and Technology(M0ST)of China(No 2005CB623604).
文摘An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests under tension. The effects of grain size as well as twin density on the strength and strain rate sensitivity were discussed.
文摘Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to determine the strain hardening exponent and the strain rate sensitivity exponent,and to construct the processing maps.Variations of the strain hardening exponent with strain were used to predict the microstructural evolutions during the hot deformation.Four variations were distinguished reflecting the different microstructural changes.Based on the analysis of the strain hardening exponent versus strain curves,the microstructural evolutions were dynamic recovery,single and multiple peak dynamic recrystallization,and interactions between dynamic recrystallization and precipitation.The strain rate sensitivity variations at an applied strain of 0.8 and strain rate of 0.1 s^(−1) were compared with the microstructural evolutions.The results demonstrate the existence of a reliable correlation between the strain rate sensitivity values and evolved microstructures.Additionally,the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at predetermined deformation conditions.The microstructural evolutions strongly correlated to the power dissipation ratio,and dynamic recrystallization occurred completely at lower power dissipation ratios.
基金Supported by the Key Project from Beijing Municipal Science and Technology Commission(D121100003912003)
文摘Objectives To investigate the positive rate of different hepatitis B virus (HBV) serological markers, and the demographic factors related to HBV infection. Methods We enrolled all patients tested for HBV serological markers, such as HBV surface antigen (HBsAg), HBV surface antibody (HBsAb), hepatitis B e antigen (HBeAg), hepatitis B e antibody (HBeAb), HBV core antibody (HBcAb), and HBV-DNA from July 2008 to July 2009 in Peking Union Medical College Hospital. The positive rate of each HBV serological marker was calculated according to gender, age, and department, respectively. The positive rates of HBV-DNA among patients with positive HBsAg were also analyzed. Results Among 27 409 samples included, 2681 (9.8%) were HBsAg positive. When patients were divided into 9 age groups, the age-specific positive rate of HBsAg was 1.2%, 9.6%, 12.3%, 10.9%, 10.3%, 9.7%, 8.0%, 5.8%, and 4.3%, respectively. The positive rate of HBsAg in non-surgical department, surgical department, and health examination center was 16.2%, 5.8%, and 4.7%, respectively. The positive rate of HBsAg of males (13.3%) was higher than that of females (7.3%, P=0.000). Among the 2681 HBsAg (+) patients, 1230 (45.9%) had HBV-DNA test, of whom 564 (45.9%) were positive. Patients with HBsAg (+), HBeAg (+), and HBcAg (+) result usually had high positive rate of HBV-DNA results (71.8%, P=0.000). Conclusions Among this group of patients in our hospital, the positive rate of HBsAg was relatively high. Age group of 20-29, males, and patients in non-surgical departments were factors associated with high positive rate of HBsAg.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261 and 1630141)
文摘The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.
基金The work is financially supported by the Foundation of National Key Basic Research and Development Program(No 2004CB619301)the Project 985-Automotive Engineering of Jilin University
文摘Tensile deformation behaviors of the electrodeposited 40 nm grain sized Ni,25 nm Ni-1.7 wt.%Co,and 13 nm Ni-8.6 wt.%Co alloys at various strain rates and room temperature were reviewed with emphasis on strain rate sensitivity and activation volume,respectively.It is found that the strain rate sensitivity and activation volume were strongly grain size dependent.An analytic model based on the bow out of a single dislocation well predicted the relationship between the strain rate sensitivity and the activation volumes for these nanocrystaline metals.
基金Funded in part by the Fundamental Research Funds for the Central Universities,SCUT(2013ZZ014)the Natural Science Foundation of Guangdong Province(No.S2013010013269)+1 种基金the Doctoral Program Foundation of Institutions of Higher Education of China(No.20130172120027)the National Engineering Research Center Open Fund of SCUT(2011007B)
文摘Strain-rate sensitivities of 55vol%-65vol% aluminum 2024-T6/TiB2 composites and the corresponding aluminum 2024-T6 matrix were investigated using split Hopkinson pressure bar method. The experimental results showed that 55vol%-65vol% aluminum 2024-T6/TiB2 composites exhibited significant strain-rate sensitivities, which were three times higher than the strain-rate sensitivity of the aluminum 2024-T6 matrix. The strain-rate sensitivity of the aluminum 2024-T6 matrix composites rose obviously with increasing reinforcement content(up to 60%), which agreed with that from the previous researches. But it decreased as the ceramic reinforcement content reached 65%. After high strain rates compression, a large number of dislocations and micro-cracks were found inside the matrix and the Ti B2 particles, respectively. These micro-cracks can accelerate the brittle fracture of the composites. The aluminum 2024-T6/Ti B2 composites showed various fracture characteristics and shear instability was the predominant failure mechanism under dynamic loading.
文摘To analyze the effect of two types of IUDs, TCu380A and GyneFix on the positive rate of Chlamydia Trahmatis (CT). Methods The TCu380A and GyneFix IUDs were compared in a randomized was for the one year and two year positive rate of Chlamydia Trahmatis (CT) and with the control respectively. Results The one year positive rate of CT antigens was 5.63% of TCu380A and two year was 4.92%; the one year positive rate of CT antigens was 4.62% and two year was 5.08% of GyneFix. There was no significant difference in the positive rate of CT antigen between the TCu380A IUD, and GyneFix IUDs groups, while there were significant differences between the TCu380A IUD, GyneFix IUD and the controls (15.18%) respectively. Conclusion Both IUDs provide highly effective protection against CT infection.
基金funded in part by the National Natural Science Foundation of China,grant number 51574257in part by the National Key Research and Development Program of China,grant number 2015CB250904。
文摘Research on reservoir rock stress sensitivity has traditionally focused on unary granular structures,neglecting the binary nature of real reservoirs,especially tight reservoirs.Understanding the stresssensitive behavior and mathematical characterization of binary granular media remains a challenging task.In this study,we conducted online-NMR experiments to investigate the permeability and porosity evolution as well as stress-sensitive control mechanisms in tight sandy conglomerate samples.The results revealed stress sensitivity coefficients between 0.042 and 0.098 and permeability damage rates ranging from 65.6%to 90.9%,with an average pore compression coefficient of 0.0168—0.0208 MPa 1.Pore-scale compression occurred in three stages:filling,compression,and compaction,with matrix pores playing a dominant role in pore compression.The stress sensitivity of binary granular media was found to be influenced by the support structure and particle properties.High stress sensitivity was associated with small fine particle size,high fines content,high uniformity coefficient of particle size,high plastic deformation,and low Young's modulus.Matrix-supported samples exhibited a high irreversible permeability damage rate(average=74.2%)and stress sensitivity coefficients(average=0.089),with pore spaces more slit-like.In contrast,grain-supported samples showed low stress sensitivity coefficients(average=0.021)at high stress stages.Based on the experiments,we developed a mathematical model for stress sensitivity in binary granular media,considering binary granular properties and nested interactions using Hertz contact deformation and Poiseuille theory.By describing the change in activity content of fines under stress,we characterized the non-stationary state of compressive deformation in the binary granular structure and classified the reservoir into three categories.The model was applied for production prediction using actual data from the Mahu reservoir in China,showing that the energy retention rates of support-dominated,fill-dominated,and matrix-controlled reservoirs should be higher than 70.1%,88%,and 90.2%,respectively.
文摘In this retrospective study, a total of 275 solid masses were examined for cytopathologic diagnosis. Twenty four percent (67/275) of these cytologic samples were followed by surgical biopsy and histopathologic diagnosis, allowing for comparisons. On average, the cutaneous and subcutaneous solid masses were recognized when the dogs were aged between 6 and 9 years old. The origins of the solid masses included connective tissue tumors 37.1% (23/62), epithelial tissue tumors 33.9% (21/62), round cell tumors 19.4% (12/62), masses of inflammatory lesions 4.8% (3/62) and lesions due to other causes 4.8% (3/62). The sensitivity and positive predictive value (PPV) of cytopathology in the diagnosis of solid masses were 93% (62/67) and 97% (62/64), respectively. Generally, neo-plasms were over diagnosed by cytopathology as was indicated by the positive predictive value. Both the sensitivity and the PPV of cytopathology comparative to histopathology in the diagnosis of inflammatory processes were 100% (3/3). The inflammatory lesions were eventually confirmed as necrotizing myositis, necro-suppurative cystitis and endocrine inflammatory dermatopathy based on histopathology. Less than 8% (5/67) of samples were incorrectly diagnosed by cytology. The study showed high accuracy between cytological and histopathological examination of solid masses in dogs, and thus a reliable diagnostic tool in patient care.
基金Project (50904010) supported by the National Natural Science Foundation of ChinaProject (2010DFB50340) supported by the China International Science and Technology Cooperation
文摘The effect of quenching rate on the electrical conductivity and microstructure of thick plates of incumbent AA7050 was investigated by employing Jominy end quench test. The electrical conductivity measurement and microstructural observation were conducted at different distances from the quenched end. The results indicate that the average cooling rates decrease with increasing the distance from the quenched end of the bar in the quench sensitive temperature range. However, the electrical conductivity increases with the increase of distance from the quenched end. The surface parts of the plate were fully recrystallized, while partial recrystallization took place at the quarter and center parts of the plate. The quench induced grain boundary precipitates became remarkably coarser and discontinuously distributed with increasing distance from the quenched end of the bar. Plenty of heterogeneous precipitates were observed to nucleate on A13Zr dispersoids when the distance from the quenched end was greater than 38mm.
基金Project(2012M511552) supported by China Postdoctoral Science FoundationProject(2009A080205001) supported by the State Key Fundamental Research Program of China
文摘The quench sensitivity of 6351 alloy was determined by the time temperature-transformation(TTT) curves and time temperature-property(TTP) curves by an interrupted quench technique with measurement of as-aged hardness and as-quenched electro-conductivity.The microstructure transformation during isothermal treatment was studied by the transmission electron microscopy(TEM) and Avrami equation.The results showed that the electro-conductivity of the 6351 alloy increased and the hardness decreased with prolonging the holding time at a certain isothermal temperature.The TEM observation indicated that the supersaturated solid solution decomposed and needles β″ precipitated at the initial stage of isothermal holding.With the prolongation of holding time at the nose temperature,rod β' and plate β phases formed.The isothermal transformation rate at 360℃ was the fastest,and became slow at 280℃ and reached the slowest at 440℃.The nose temperatures of the TTT and TTP curves were about 360℃ and the high quench sensitive temperature range was 230 430℃.The quench factor analysis indicated that the cooling rate should be more than 15℃/s in the quench sensitive areas in order to get optimal mechanical properties.
基金Jiangsu Science and Technology Project(No.BY2016076-05)the Scientific Research Foundation of Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15_0152)
文摘A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.
文摘Despite improvements in glucose, lipids and bloodpressure control, vascular complications remain the most important cause of morbidity and mortality in patients with type 1 diabetes. For that reason, there is a need to identify additional risk factors to utilize in clinical practice or translate to novel therapies to prevent vascular complications. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes that has been linked with the development and progression of both micro- and macrovascular complications. Adolescents and adults with type 1 diabetes have reduced insulin sensitivity, even when compared to their non-diabetic counterparts of similar adiposity, serum triglycerides, high-density lipoprotein cholesterol, level of habitual physical activity, and in adolescents, pubertal stage. Reduced insulin sensitivity is thought to contribute both to the initiation and progression of macro- and microvascular complications in type 1 diabetes. There are currently clinical trials underway examining the benefits of improving insulin sensitivity with regards to vascular complications in type 1 diabetes. Reduced insulin sensitivity is an increasingly recognized component of type 1 diabetes, is implicated in the pathogenesis of vascular complications and is potentially an important therapeutic target to prevent vascular complications. In this review, we will focus on the pathophysiologic contribution of insulin sensitivity to vascular complications and summarize related ongoing clinical trials.
文摘In this article, the industrial process of CO_2 capture using monoethanolamine as an aqueous solvent was probed carefully from the mass transfer viewpoint. The simulation of this process was done using Rate-Base model, based on two-film theory. The results were validated against real plant data. Compared to the operational unit, the error of calculating absorption percentage and CO_2 loading was estimated around 2%. The liquid temperature profiles calculated by the model agree well with the real temperature along the absorption tower, emphasizing the accuracy of this model. Operational sensitivity analysis of absorption tower was also done with the aim of determining sensitive parameters for the optimized design of absorption tower and optimized operational conditions. Hence,the sensitivity analysis was done for the flow rate of gas, the flow rate of solvent, flue gas temperature, inlet solvent temperature, CO_2 concentration in the flue gas, loading of inlet solvent, and MEA concentration in the solvent. CO_2 absorption percentage, the profile of loading, liquid temperature profile and finally profile of CO_2 mole fraction in gas phase along the absorption tower were studied. To elaborate mass transfer phenomena, enhancement factor, interfacial area, molar flux and liquid hold up were probed. The results show that regarding the CO_2 absorption, the most important parameter was the gas flow rate. Comparing liquid temperature profiles showed that the most important parameter affecting the temperature of the rich solvent was MEA concentration.
基金financially supported by the National Natural Science Foundation of China(Nos.51801060,51831004 and 52171006)。
文摘The Fe-29 Mn-3 Al-3 Si twin-induced plasticity(TWIP)steel is used to conduct quasi-static compression and dynamic impact deformation with strain rates ranging from 8.3×10^(-4) to 3800 s^(-1).The microstructures and properties of deformed samples under different strain rates were investigated comparatively.These results show that positive strain rate sensitivity was observed with the increase in strain rates and that there was a significant difference in strain rate sensitivity factor(m)between quasi-static compression(m=0.029)and dynamic impact deformation(m=0.190).Compared to the quasi-static compression,the dynamic impact deformation exhibited higher yield strength.Microstructural examination reveals that the primary twins were frequently found during the quasi-static compression process,and the secondary twins were rarely observed.However,the secondary and multi-fold deformation twins were florescent in the dynamic impact samples.At the initial stage of dynamic impact deformation,partial dislocations and staking faults on multiple conjugate{111}planes were simultaneously activated and produced a large number of Lomer-Cottrell dislocations,resulting in a large increase in yield strength during dynamic impact.
基金financially supported by the National High Technology Research and Development Program(No.2013AA031002)
文摘The cooling rate sensitivities of A1TiB, RE and A1TiB-RE refiners were investigated using laboratory experiments and the actual industrial applications of A356 automotive wheel via low pressure die casting technology. Their impact mechanisms on the microstructure and mechanical properties of the A356 alloy were discussed. The results demonstrated that the AITiB-RE refiner possessed most effective and synergetic refinement effects compared to the individual A1TiB or RE refiners. The A1TiB-RE refiner exhibited the least sensitivity to the cooling rate changes than the other refiners. The comprehensive properties of alloy wheel refined by the A1TiB-RE refiner were improved significantly. The tensile strength, yield strength, and elongation of wheel spoke improved by approximately 11.3%, 10.8% and 44.1%, respectively. The property difference values of the tensile strength, yield strength, and elongation in different positions of the wheel decreased from 14.8%, 31.2% and 47.7% to 8.6%, 27.1% and 30.9%, respectively.
文摘Two distinct regimes of strain rate sensitivity on yield strength are found in a high-strength nantwinned steel.The yield strength increases from 1410 to 1776 MPa when the strain rate increases from 10–3 to 1400 s-1.It is proposed from the measured small activation volume that the yielding of the nanotwinned steel at higher strain rates is governed by the dislocation bowing out from the carbon atmosphere.At lower strain rates,however,the yielding is controlled by the continuous re-pinning of dislocations due to the fast diffused carbon atoms,which leads to the relative insensitivity of yield strength to the strain rate.