期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Protective effects of Bushen Tiansui decoction on hippocampal synapses in a rat model of Alzheimer's disease 被引量:9
1
作者 Shan Hui Yu Yang +5 位作者 Wei-jun Peng Chen-xia Sheng Wei Gong Shuai Chen Pan-pan Xu Zhe Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1680-1686,共7页
Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bus... Bushen Tiansui decoction is composed of six traditional Chinese medicines:Herba Epimedii,Radix Polygoni multiflori,Plastrum testudinis,Fossilia Ossis Mastodi,Radix Polygalae,and Rhizoma Acorus tatarinowii.Because Bushen Tiansui decoction is effective against amyloid beta(Aβ) toxicity,we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease.To test this hypothesis,we used a previously established animal model of Alzheimer's disease,that is,microinjection of aggregated Aβ25–35 into the bilateral brain ventricles of Sprague-Dawley rats.We found that long-term(28 days) oral administration of Bushen Tiansui decoction(0.563,1.688,and 3.375 g/m L;4 m L/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins,including postsynaptic density protein 95,the N-methyl-D-aspartate receptor 2 B subunit,and Shank1.These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins.Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze(i.e.,increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aβ25–35 compared with those measures in untreated Aβ_(25–35)-injected rats.Overall,these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted. 展开更多
关键词 nerve regeneration neurodegeneration Bushen Tiansui decoction Alzheimer's disease synaptic plasticity amyloid β synaptic proteins Shank1 N-methyl-D-aspartate receptor 2B subunit postsynaptic density protein 95 Morris water maze neural regeneration
下载PDF
Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells 被引量:1
2
作者 Yun Huang Mingnan Lu +3 位作者 Weitao Guo Rong Zeng Bin Wang Huaibo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期869-881,共13页
In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse form... In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells. 展开更多
关键词 neural regeneration stem cells bone marrow mesenchymal stem cells neuron-like cells SYNAPSE thrombospondin 1 NEURITE postsynaptic density protein 95 synaptophysin 1 neuron-specificenolase glial fibrillary acidic protein grants-supported paper NEUROREGENERATION
下载PDF
Knock-down of postsynaptic density protein 95 expression by antisense oligonucleotides protects against apoptosis-like cell death induced by oxygen-glucose deprivation in vitro 被引量:1
3
作者 Jing-Zhi Yan Yong Liu +1 位作者 Yan-Yan Zong Guang-Yi Zhang 《Neuroscience Bulletin》 SCIE CAS CSCD 2012年第1期69-76,共8页
Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PS... Objective Postsynaptic density protein 95 (PSD-95) plays important roles in the regulation of glutamate signaling, such as that of N-methyl-D-aspartate receptors (NMDARs). In this study, the functional roles of PSD-95 in tyrosine phosphorylafion of NMDAR subunit 2A (NR2A) and in apoptosis-like cell death induced by oxygen-glucose de- privation (OGD) in cultured rat cortical neurons were investigated. Methods We used immunoprecipitation and immuno- blotting to detect PSD-95 protein level, tyrosine phosphorylation level of NR2A, and the interaction between PSD-95 and NR2A or Src. Apoptosis-like cells were observed by 4,6-diamidino-2-phenylindole staining. Results Tyrosine phospho- rylation of NR2A and apoptosis-like cell death were increased after recovery following 60-min OGD. The increases were attenuated by pretreatment with antisense oligonucleotides against PSD-95 before OGD, but not by missense oligonucle- otides or vehicle. PSD-95 antisense oligonucleotides also inhibited the increased interaction between PSD-95 and NR2A or Src, while NR2A expression did not change under this condition. Conclusion PSD-95 may be involved in regulating NR2A tyrosine phosphorylation by Src kinase. Inhibition of PSD-95 expression can be neuroprotective against apoptosis- like cell death after recovery from OGD. 展开更多
关键词 postsynaptic density protein 95 N-methyl-D-aspartate receptor oxygen-glucose deprivation tyrosine phos-phorylation SRC cortical neurons
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部