The Khorat Plateau on the Indochina Terrane is known to have formed during the closure of the Tethys Ocean, although the origin of its potash mineral deposits is a topic of current debate. Data from a borehole on Sava...The Khorat Plateau on the Indochina Terrane is known to have formed during the closure of the Tethys Ocean, although the origin of its potash mineral deposits is a topic of current debate. Data from a borehole on Savannakhet Basin is used in this study to re-define the evaporation processes of the study area. Geochemical analyses of halite from various borehole-derived evaporite strata have elucidated the fluid sources from which these ores formed. Measured δ11B indicated that ore deposits formed primarily due to evaporation of seawater, although non-marine fluids affected the later stages of the evaporation process. Fluctuations in B and Br concentrations in carnallite- and sylvite-rich strata indicate the influence of fresh water. Boron concentration in carnallite unit indicated the influence of hydrothermai fluids. From the relative timings of these various fluid influxes, the evolution of these evaporates can be divided into four stages: (1) an initial marine evaporation at the beginning of the deposit's formation, where seawater (and minor fresh water) trapped on the uplifted Khorat Plateau produced sediments and salts with Br contents lower than those of normal marine-derived evaporites; (2) a transgression stage, where seawater recharged the basin; (3) a hydrothermal infiltration stage, which was coeval with the late Yanshan movement; and (4) a stage of fresh water supply, as recorded by fluctuations in B and Br contents, inferring intermittent fresh water influx into the basin. Thus, although evaporites on the Savannakhet Basin primarily formed via marine evaporation, they were also influenced to a significant degree by the addition of non-marine fresh water and hydrothermal fluids.展开更多
The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence...The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.展开更多
Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors ...Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors have found a superlarge brine potash deposit in the Luobei subbasin—a secondary basin of the Lop Nur depression. The deposit has been mined now. On that basis, the authors propose new theories on the genesis of the potash rock deposit. In the tectonic and geomorphologic contexts, the Tarim basin lies in a 'high mountain-deep basin' environment. At the beginning of the Quaternary, influenced by the neotectonic movement, the Lop Nur evolved into a 'deep basin' in the Tarim basin. At the end of the middle Pleistocene, neotectonic migration began to take place in the interior of the Lop Nur and a new secondary deep basin—the Luobei subbasin—formed gradually. Despite its small area, it is actually the deepest subbasin in the Lop Nur depression, where brines of the Lop Nur Salt Lake gather and evaporate, thus providing materials for the formation of a superlarge brine potash rock deposit. With respect to the phenomenon of brine concentration and change with deepening of the lake, the authors propose a model of 'high mountain-deep basin' tectonic migration for potash concentration. In the sedimentological context, the honeycomb-shaped voids developed in glauberite rock in the subbasin are good space for potash-rich brine accumulation. Study indicates that the deposition of glauberite requires recharge of calcium-rich water. In the Tarim area the calcium-rich water might come from deep formation water or oilfield water, and the river water recharging the Lop Nur Salt Lake was rich in sulfate radicals and other components; in addition, the climate in the area was very dry and the brine evaporated steadily, thus resulting in deposition of substantial amount of glauberite, potash accumulation in intercrystal brine and final formation of the potash deposit. Generally, potash formation in a salt lake undergoes a three-stage process of 'carbonates—?sulfates (gypsum and glauberite)—^chlorides (halite etc.)', but in the study area there only occurred a two-stage process of 'carbonates—>sulfates (gypsum and glauberite)'. The authors call this new geological phenomenon the 'two-stage potash formation' model. In conclusion, the superlarge Lop Nur potash deposit is the result of combined 'high mountain-deep basin' tectonism and 'two-stage potash formation'.展开更多
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected fr...The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.展开更多
Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this d...Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin.展开更多
We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The S...We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable展开更多
基金funded by the National Natural Science Foundation of China(grant No.40903024)the National Natural Science Foundation of China(grant No.41602086)
文摘The Khorat Plateau on the Indochina Terrane is known to have formed during the closure of the Tethys Ocean, although the origin of its potash mineral deposits is a topic of current debate. Data from a borehole on Savannakhet Basin is used in this study to re-define the evaporation processes of the study area. Geochemical analyses of halite from various borehole-derived evaporite strata have elucidated the fluid sources from which these ores formed. Measured δ11B indicated that ore deposits formed primarily due to evaporation of seawater, although non-marine fluids affected the later stages of the evaporation process. Fluctuations in B and Br concentrations in carnallite- and sylvite-rich strata indicate the influence of fresh water. Boron concentration in carnallite unit indicated the influence of hydrothermai fluids. From the relative timings of these various fluid influxes, the evolution of these evaporates can be divided into four stages: (1) an initial marine evaporation at the beginning of the deposit's formation, where seawater (and minor fresh water) trapped on the uplifted Khorat Plateau produced sediments and salts with Br contents lower than those of normal marine-derived evaporites; (2) a transgression stage, where seawater recharged the basin; (3) a hydrothermal infiltration stage, which was coeval with the late Yanshan movement; and (4) a stage of fresh water supply, as recorded by fluctuations in B and Br contents, inferring intermittent fresh water influx into the basin. Thus, although evaporites on the Savannakhet Basin primarily formed via marine evaporation, they were also influenced to a significant degree by the addition of non-marine fresh water and hydrothermal fluids.
基金This study is finished through the cooperation project between China Geological Survey and Department of Mineral Resources(Thailand)supported by the National Key Project for Basic Research of China(2011CB403007)+2 种基金the National Natural Science Foundation of China(41572067,91855104,41802111)the Geological Survey Project(DD20190437)"Mineral potential exploration and assessment for potash"by the Government of Thailand.
文摘The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.
基金the Oriented Foundation Proiect (DKD 95—22) the form er Ministry of Geology and Mineral Resources,State 305 Project(96-915—08—05)+2 种基金 the Ministry of Science Technology and Project 992025 the Ministry of Land and Resources.
文摘Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors have found a superlarge brine potash deposit in the Luobei subbasin—a secondary basin of the Lop Nur depression. The deposit has been mined now. On that basis, the authors propose new theories on the genesis of the potash rock deposit. In the tectonic and geomorphologic contexts, the Tarim basin lies in a 'high mountain-deep basin' environment. At the beginning of the Quaternary, influenced by the neotectonic movement, the Lop Nur evolved into a 'deep basin' in the Tarim basin. At the end of the middle Pleistocene, neotectonic migration began to take place in the interior of the Lop Nur and a new secondary deep basin—the Luobei subbasin—formed gradually. Despite its small area, it is actually the deepest subbasin in the Lop Nur depression, where brines of the Lop Nur Salt Lake gather and evaporate, thus providing materials for the formation of a superlarge brine potash rock deposit. With respect to the phenomenon of brine concentration and change with deepening of the lake, the authors propose a model of 'high mountain-deep basin' tectonic migration for potash concentration. In the sedimentological context, the honeycomb-shaped voids developed in glauberite rock in the subbasin are good space for potash-rich brine accumulation. Study indicates that the deposition of glauberite requires recharge of calcium-rich water. In the Tarim area the calcium-rich water might come from deep formation water or oilfield water, and the river water recharging the Lop Nur Salt Lake was rich in sulfate radicals and other components; in addition, the climate in the area was very dry and the brine evaporated steadily, thus resulting in deposition of substantial amount of glauberite, potash accumulation in intercrystal brine and final formation of the potash deposit. Generally, potash formation in a salt lake undergoes a three-stage process of 'carbonates—?sulfates (gypsum and glauberite)—^chlorides (halite etc.)', but in the study area there only occurred a two-stage process of 'carbonates—>sulfates (gypsum and glauberite)'. The authors call this new geological phenomenon the 'two-stage potash formation' model. In conclusion, the superlarge Lop Nur potash deposit is the result of combined 'high mountain-deep basin' tectonism and 'two-stage potash formation'.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions of China (No.K1405)the National Key Project for Basic Research of China (No.2011CB403007)the National Natural Science Foundation of China (No.41572067)
文摘The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.
基金supported by the"national Key R&D Program of China"(grant No.2017YFC0602801)geological survey project of"Investigation and Evaluation of the Potash Deposit Prospect in West China"(grant No.DD20160054)
文摘Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin.
基金supported by National Natural Science Foundation of China (grant NO. 21373252)
文摘We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable