期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Multi–fluid Constrain for the Forming of Potash Deposits in the Savannakhet Basin: Geochemical Evidence from Halite 被引量:4
1
作者 REN Qianhui DU Yongsheng +4 位作者 GAO Donglin LI Binkai ZHANG Xiying LIU Xiuting YUAN Xiaolong 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期755-768,共14页
The Khorat Plateau on the Indochina Terrane is known to have formed during the closure of the Tethys Ocean, although the origin of its potash mineral deposits is a topic of current debate. Data from a borehole on Sava... The Khorat Plateau on the Indochina Terrane is known to have formed during the closure of the Tethys Ocean, although the origin of its potash mineral deposits is a topic of current debate. Data from a borehole on Savannakhet Basin is used in this study to re-define the evaporation processes of the study area. Geochemical analyses of halite from various borehole-derived evaporite strata have elucidated the fluid sources from which these ores formed. Measured δ11B indicated that ore deposits formed primarily due to evaporation of seawater, although non-marine fluids affected the later stages of the evaporation process. Fluctuations in B and Br concentrations in carnallite- and sylvite-rich strata indicate the influence of fresh water. Boron concentration in carnallite unit indicated the influence of hydrothermai fluids. From the relative timings of these various fluid influxes, the evolution of these evaporates can be divided into four stages: (1) an initial marine evaporation at the beginning of the deposit's formation, where seawater (and minor fresh water) trapped on the uplifted Khorat Plateau produced sediments and salts with Br contents lower than those of normal marine-derived evaporites; (2) a transgression stage, where seawater recharged the basin; (3) a hydrothermal infiltration stage, which was coeval with the late Yanshan movement; and (4) a stage of fresh water supply, as recorded by fluctuations in B and Br contents, inferring intermittent fresh water influx into the basin. Thus, although evaporites on the Savannakhet Basin primarily formed via marine evaporation, they were also influenced to a significant degree by the addition of non-marine fresh water and hydrothermal fluids. 展开更多
关键词 Savannakhet Basin potash deposit boron isotopes GEOCHEMISTRY
下载PDF
The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia 被引量:4
2
作者 Li-jian Shen Nuchit Siritongkham 《China Geology》 2020年第1期67-82,共16页
The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence... The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau. 展开更多
关键词 potash deposit CRETACEOUS Formation model Seawater Post-depositional alteration Potential exploration target Mineral exploration engineering Thailand Laos Southeast Asia
下载PDF
Minerogenic Theory of the Superlarge Lop Nur Potash Deposit, Xinjiang, China 被引量:28
3
作者 WANGMili LIUChenglin +1 位作者 JIAOPengcheng YANGZhichen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期53-65,共13页
Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors ... Located in the eastern part of the Tarim basin, Xinjiang, the Lop Nur was an ultimate water catchment area of the Tarim basin during the Quaternary. Through nearly ten years of investigation and research, the authors have found a superlarge brine potash deposit in the Luobei subbasin—a secondary basin of the Lop Nur depression. The deposit has been mined now. On that basis, the authors propose new theories on the genesis of the potash rock deposit. In the tectonic and geomorphologic contexts, the Tarim basin lies in a 'high mountain-deep basin' environment. At the beginning of the Quaternary, influenced by the neotectonic movement, the Lop Nur evolved into a 'deep basin' in the Tarim basin. At the end of the middle Pleistocene, neotectonic migration began to take place in the interior of the Lop Nur and a new secondary deep basin—the Luobei subbasin—formed gradually. Despite its small area, it is actually the deepest subbasin in the Lop Nur depression, where brines of the Lop Nur Salt Lake gather and evaporate, thus providing materials for the formation of a superlarge brine potash rock deposit. With respect to the phenomenon of brine concentration and change with deepening of the lake, the authors propose a model of 'high mountain-deep basin' tectonic migration for potash concentration. In the sedimentological context, the honeycomb-shaped voids developed in glauberite rock in the subbasin are good space for potash-rich brine accumulation. Study indicates that the deposition of glauberite requires recharge of calcium-rich water. In the Tarim area the calcium-rich water might come from deep formation water or oilfield water, and the river water recharging the Lop Nur Salt Lake was rich in sulfate radicals and other components; in addition, the climate in the area was very dry and the brine evaporated steadily, thus resulting in deposition of substantial amount of glauberite, potash accumulation in intercrystal brine and final formation of the potash deposit. Generally, potash formation in a salt lake undergoes a three-stage process of 'carbonates—?sulfates (gypsum and glauberite)—^chlorides (halite etc.)', but in the study area there only occurred a two-stage process of 'carbonates—>sulfates (gypsum and glauberite)'. The authors call this new geological phenomenon the 'two-stage potash formation' model. In conclusion, the superlarge Lop Nur potash deposit is the result of combined 'high mountain-deep basin' tectonism and 'two-stage potash formation'. 展开更多
关键词 Lop Nur potash deposit GLAUBERITE high mountain-deep basin tectonic migration two-stage potash formation
下载PDF
Degree of Brine Evaporation and Origin of the Mengyejing Potash Deposit:Evidence from Fluid Inclusions in Halite 被引量:12
4
作者 SHEN Lijian LIU Chenglin +3 位作者 WANG Licheng HU Yufei HU Mingyue FENG Yuexing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第1期175-185,共11页
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected fr... The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates. 展开更多
关键词 CRETACEOUS halite fluid inclusions H and O isotopic compositions brine chemical compositions Mengyejing potash deposit Yunnan Province
下载PDF
New Sr Isotope Evidence to Support the Material Source of the Mengyejing Potash Deposit in the Simao Basin from Ancient Marine Halite or Residual Sea 被引量:7
5
作者 MIAO Zhongying 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期866-867,共2页
Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this d... Objective The Mengyejing potash deposit in the Simao Basin is the only producing area of solid potash at present in China. There is still controversy about the material source and distribution of the potash in this deposit (Shen Lijian et al., 2017), which has influenced not only the prospecting direction and efficiency but also the understanding of the control of Tethys tectonic evolution on the formation and distribution of the mineral resources. This work analyzed the Sr isotope geochemical characteristics of evaporites from core samples in the well MZK-3 in order to further clarify the material source and to explore the potash distribution in the Simao Basin. 展开更多
关键词 Sr New Sr Isotope Evidence to Support the Material Source of the Mengyejing potash Deposit in the Simao Basin from Ancient Marine Halite or Residual Sea
下载PDF
The Solid-liquid Transformation of Low-grade Solid Potash Deposit in Dalangtan Basin and the Simplification of the Liquid Phase System
6
作者 WANG Xiaohan ZHANG Chao +2 位作者 XIE Shaolei JIA Yongzhong YAO Ying 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期436-436,共1页
We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The S... We studied the solid-liquid transformation of low-grade solid potash deposit in Dalangtan Basin and simplified the liquid phase system.We did experiments to optimize conditions of the solid-liquid transformation.The Suitable 展开更多
关键词 low-grade solid potash deposit solid-liquid transformation liquid phase system SIMPLIFICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部